Skip to main content

Design and simulation of a strong and uniform microwave antenna for a large volume of nitrogen-vacancy ensembles in diamond


We present a three-dimensional microwave antenna design, which can provide strong and spatially homogeneous GHz microwaves for efficient driving of nitrogen-vacancy (NV) ensembles in a diamond. From numerical simulation, we find the field strength to be as large as ~ 21 G at 2.87 GHz equivalent to an ~ 60 MHz Rabi frequency. In addition, the field remains uniform over an ~ mm3 volume of the diamond. We determine the antenna parameters and configurations based on quantitative analyses of the simulation results in terms of the loop radius, the number of coil, the dielectric materials and the coil configurations of the solenoid and Helmholtz coil. The antenna design studied in this research can be used in various sensing applications based on the NV ensemble, where a strong and uniform microwave drive is necessary.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Ann. Rev. Phys. Chem. 65, 83–105 (2014)

    ADS  Article  Google Scholar 

  2. 2.

    F. Casola, T. van der Sar, A. Yacoby, Nature Rev. Mat. 3, 17088 (2018)

    ADS  Article  Google Scholar 

  3. 3.

    J.F. Barry, H.M. Schloss, E. Bauch, M.J. Turner, C.A. Hart, L.M. Pham, R.L. Walsworth, Rev. Mod. Phys. 92, 015004 (2020)

    ADS  Article  Google Scholar 

  4. 4.

    V.M. Acosta, E. Bauch, M.P. Ledbetter, C. Santori, K.-M.C. Fu, P.E. Barclay, R.G. Beausoleil, H. Linget, J.F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, D. Budker, Phys, Rev. B 80, 115202 (2009)

    ADS  Article  Google Scholar 

  5. 5.

    T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup, Phys. Rev. X 5, 041001 (2015)

    Google Scholar 

  6. 6.

    P. Kehayias, M. Mrozek, V.M. Acosta, A. Jarmola, D.S. Rudnicki, R. Folman, W. Gawlik, D. Budker, Phys. Rev. B 89, 245202 (2014)

    ADS  Article  Google Scholar 

  7. 7.

    Y. Masuyama, K. Mizuno, H. Ozawa, H. Ishiwata, Y. Hatano, T. Ohshima, T. Iwasaki M. Hatano, Rev. Sci. Instrum. 89, 125007 (2018).

  8. 8.

    W. Jia, Z. Shi, X. Qin, X. Rong, J. Du, Rev. Sci. Instrum. 89, 064705 (2018)

    ADS  Article  Google Scholar 

  9. 9.

    K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K.M. Itoh, E. Abe, Rev. Sci. Instrum. 87, 053904 (2016)

    Article  Google Scholar 

  10. 10.

    V.R. Horowitz, B.J. Aleman, D.J. Christle, A.N. Cleland, D.D. Awschalom, Proc. Natl. Acad. Sci. U.S.A. 109, 13493 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    N. Zhang, H. Yuan, C. Zhang, L. Xu, J. Zhang, G. Bian, B. Li, J. Fang, Appl. Phy. Express 11, 086602 (2018)

    ADS  Article  Google Scholar 

  12. 12.

    E.R. Eisenach, J.F. Barry, L.M. Pham, R.G. Rojas, D.R. Englund, D.A. Braje, Rev. Sci. Instrum. 89, 094705 (2018)

    ADS  Article  Google Scholar 

  13. 13.

    H. Zheng, J. Xu, G.Z. Iwata, T. Lenz, J. Michl, B. Yavkin, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup, A. Wickenbrock, D. Budker, Phys. Rev. Applied 11, 064068 (2019)

    ADS  Article  Google Scholar 

  14. 14.

    C.D. Aiello, M. Hirose, P. Cappellaro, Nature Comm. 4, 1419 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    E. Nenasheva, N. Kartenko, I. Gaidamaka, O. Trubitsyna, S. Redozubov, A. Dedyke, A. Kanareykin, J. Eur. Ceram. Soc. 30, 395 (2010)

    Article  Google Scholar 

  16. 16.

    V. Yaroshenko, V. Soshenko, V. Vorobyov, S. Bolshedvorskii, E. Nenasheva, I. Kotel’nikov, A. Akimov, P. Kapitanova, Rev. Sci. Instrum. 91, 035003 (2020).

Download references


This work is supported by the Defense Agency for Technology and Quality (DTaQ), Korea and by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2020-0-01606) supervised by the IITP (Institute of Information & Communications Technology Planning & Evaluation).

Author information



Corresponding author

Correspondence to Donghun Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, C., Lee, D. Design and simulation of a strong and uniform microwave antenna for a large volume of nitrogen-vacancy ensembles in diamond. J. Korean Phys. Soc. 78, 280–283 (2021).

Download citation


  • Microwave antenna
  • Diamond NV ensemble
  • Quantum sensing