Skip to main content
Log in

Design and simulation of a strong and uniform microwave antenna for a large volume of nitrogen-vacancy ensembles in diamond

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We present a three-dimensional microwave antenna design, which can provide strong and spatially homogeneous GHz microwaves for efficient driving of nitrogen-vacancy (NV) ensembles in a diamond. From numerical simulation, we find the field strength to be as large as ~ 21 G at 2.87 GHz equivalent to an ~ 60 MHz Rabi frequency. In addition, the field remains uniform over an ~ mm3 volume of the diamond. We determine the antenna parameters and configurations based on quantitative analyses of the simulation results in terms of the loop radius, the number of coil, the dielectric materials and the coil configurations of the solenoid and Helmholtz coil. The antenna design studied in this research can be used in various sensing applications based on the NV ensemble, where a strong and uniform microwave drive is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Ann. Rev. Phys. Chem. 65, 83–105 (2014)

    Article  ADS  Google Scholar 

  2. F. Casola, T. van der Sar, A. Yacoby, Nature Rev. Mat. 3, 17088 (2018)

    Article  ADS  Google Scholar 

  3. J.F. Barry, H.M. Schloss, E. Bauch, M.J. Turner, C.A. Hart, L.M. Pham, R.L. Walsworth, Rev. Mod. Phys. 92, 015004 (2020)

    Article  ADS  Google Scholar 

  4. V.M. Acosta, E. Bauch, M.P. Ledbetter, C. Santori, K.-M.C. Fu, P.E. Barclay, R.G. Beausoleil, H. Linget, J.F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, D. Budker, Phys, Rev. B 80, 115202 (2009)

    Article  ADS  Google Scholar 

  5. T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup, Phys. Rev. X 5, 041001 (2015)

    Google Scholar 

  6. P. Kehayias, M. Mrozek, V.M. Acosta, A. Jarmola, D.S. Rudnicki, R. Folman, W. Gawlik, D. Budker, Phys. Rev. B 89, 245202 (2014)

    Article  ADS  Google Scholar 

  7. Y. Masuyama, K. Mizuno, H. Ozawa, H. Ishiwata, Y. Hatano, T. Ohshima, T. Iwasaki M. Hatano, Rev. Sci. Instrum. 89, 125007 (2018).

  8. W. Jia, Z. Shi, X. Qin, X. Rong, J. Du, Rev. Sci. Instrum. 89, 064705 (2018)

    Article  ADS  Google Scholar 

  9. K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K.M. Itoh, E. Abe, Rev. Sci. Instrum. 87, 053904 (2016)

    Article  Google Scholar 

  10. V.R. Horowitz, B.J. Aleman, D.J. Christle, A.N. Cleland, D.D. Awschalom, Proc. Natl. Acad. Sci. U.S.A. 109, 13493 (2012)

    Article  ADS  Google Scholar 

  11. N. Zhang, H. Yuan, C. Zhang, L. Xu, J. Zhang, G. Bian, B. Li, J. Fang, Appl. Phy. Express 11, 086602 (2018)

    Article  ADS  Google Scholar 

  12. E.R. Eisenach, J.F. Barry, L.M. Pham, R.G. Rojas, D.R. Englund, D.A. Braje, Rev. Sci. Instrum. 89, 094705 (2018)

    Article  ADS  Google Scholar 

  13. H. Zheng, J. Xu, G.Z. Iwata, T. Lenz, J. Michl, B. Yavkin, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup, A. Wickenbrock, D. Budker, Phys. Rev. Applied 11, 064068 (2019)

    Article  ADS  Google Scholar 

  14. C.D. Aiello, M. Hirose, P. Cappellaro, Nature Comm. 4, 1419 (2013)

    Article  ADS  Google Scholar 

  15. E. Nenasheva, N. Kartenko, I. Gaidamaka, O. Trubitsyna, S. Redozubov, A. Dedyke, A. Kanareykin, J. Eur. Ceram. Soc. 30, 395 (2010)

    Article  Google Scholar 

  16. V. Yaroshenko, V. Soshenko, V. Vorobyov, S. Bolshedvorskii, E. Nenasheva, I. Kotel’nikov, A. Akimov, P. Kapitanova, Rev. Sci. Instrum. 91, 035003 (2020).

Download references

Acknowledgements

This work is supported by the Defense Agency for Technology and Quality (DTaQ), Korea and by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2020-0-01606) supervised by the IITP (Institute of Information & Communications Technology Planning & Evaluation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghun Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C., Lee, D. Design and simulation of a strong and uniform microwave antenna for a large volume of nitrogen-vacancy ensembles in diamond. J. Korean Phys. Soc. 78, 280–283 (2021). https://doi.org/10.1007/s40042-021-00067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00067-5

Keywords

Navigation