Optimal temperature of the sol–gel solution used to fabricate high-quality ZnO thin films via the dip-coating method for highly sensitive UV photodetectors


We used a ZnO sol–gel solution to deposit ZnO thin films at various temperatures via a dip-coating method and investigated their structural, optical, and photoresponse properties. All the deposited ZnO thin films exhibited a fibrous structure, and the average thickness of the films increased from 0.04 to 0.52 μm with decreasing temperature of the sol–gel solution. From the X-ray diffraction results, we found three distinct diffraction peaks corresponding to the (100), (002), and (101) planes of wurtzite ZnO, without any preferred orientation. With decreasing temperature of the sol–gel solution, the intensity of the diffraction peaks increased. In the photoluminescence analysis, a sharp ultraviolet and a broad orange emission were exhibited in all ZnO thin films, and the intensity of the both emissions increased with decreasing temperature of the sol–gel solution. However, the highest photocurrent and photosensitivity were achieved from a ZnO thin film deposited using the sol–gel solution at 60 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Y. Lai, M. Meng, Y. Yu, X. Wang, T. Ding, Appl. Catal. B Environ. 105, 335 (2011)

    Article  Google Scholar 

  2. 2.

    C. McDonagh, F. Sheridan, T. Butler, B.D. MacCraith, J. Non-Cryst, Solids 194, 72 (1996)

    Google Scholar 

  3. 3.

    L. Wu, Y. Wu, X. Pan, F. Kong, Opt. Mater. 28, 418 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D.H. Lien, Z.L. Wang, ACS Nano 4, 6285 (2010)

    Article  Google Scholar 

  5. 5.

    Y. Kim, J.-Y. Leem, J. Nanosci. Nanotechnol. 16, 1 (2016)

    Article  Google Scholar 

  6. 6.

    W.S. Han, Y.Y. Kim, B.H. Kong, H.K. Cho, Thin Solid Films 517, 5106 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    X. Ma, P. Chen, D. Li, Y. Zhang, D. Yang, Appl. Phys. Lett. 91, 251109 (2007)

    ADS  Article  Google Scholar 

  8. 8.

    S.S. Hullavarad, N.V. Hullavarad, P.C. Karulkar, A. Luykx, P. Valdivia, Nanoscale Res. Lett. 2, 161 (2007)

    ADS  Article  Google Scholar 

  9. 9.

    S. Takata, T. Minami, H. Nanto, Thin Solid Films 135, 183 (1986)

    ADS  Article  Google Scholar 

  10. 10.

    Y. Hagiwara, T. Nakada, A. Kunioka, Sol. Energy Mater Sol. Cells 67, 267 (2001)

    Article  Google Scholar 

  11. 11.

    Z. Ye, M. Wong, M.-T. Ng, K.-H Chui, C.-K Kong, L. Lu, T. Liu, J.K. Luo, J. Display Technol 11, 22 (2015)

  12. 12.

    M.S. Kim, S. Kim, G. Nam, D.Y. Lee, J.-Y. Leem, Opt. Mater. 34, 1543 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    T.L. Yanga, D.H. Zhang, J. Ma, H.L. Ma, Y. Chen, Thin Solid Films 326, 60 (1998)

    ADS  Article  Google Scholar 

  14. 14.

    J.-L. Wang, T.-Y. Hsieh, P.-Y. Yang, C.-C. Hwang, D.-C. Shye, I.-C. Lee, Surf. Coat. Technol. 231, 423 (2013)

    Article  Google Scholar 

  15. 15.

    A. Ashour, M.A. Kaid, N.Z. El-Sayed, A.A. Ibrahim, Appl. Surf. Sci. 252, 7844 (2006)

    ADS  Article  Google Scholar 

  16. 16.

    V.R. Shindea, C.D. Lokhandea, R.S. Maneb, S.-H. Han, Appl. Surf. Sci. 245, 407 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    S. Kim, G. Nam, H. Yoon, H. Park, H. Choi, J.S. Kim, J.S. Kim, D.Y. Kim, S.-O. Kim, J.-Y. Leem, Electron. Mater. Lett. 10, 869 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    N. Nagayasamy, S. Gandhimathination, V. Veerasamy, Open J. Met. 3, 8 (2013)

    Article  Google Scholar 

  19. 19.

    S,-H. Lee, W. So, J.H. Jung, G. Nam, H. Park, H. Yoon, B.G. Kim, S.H. Park, S. Kim, M. S. Kim, J. Lee, J.-Y. Leem, J. Korean Phys. Soc. 61, 1925–1931 (2012)

  20. 20.

    A. Pakedl, F.E. Ghodsi, Pramana 76, 973 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    K. Sivakumar, V. Senthil Kumar, N. Muthukumarasamy, M. Thambidurai, T.S. Senthil, Bull. Mater. Sci. 35, 327 (2012)

  22. 22.

    U.N. Maiti, P.K. Ghosh, S. Nandy, K.K. Chattopadhyay, Phys. B 387, 103 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    .S.J. Kwon, J.-H. Park and J.-G. Park, Phys. Rev. E 71, 011604 (2005)

  24. 24.

    J. Zhao, Z.-G. Jin, T. Li, X.-X. Liu, J. Eur. Ceram. Soc. 26, 2769 (2006)

    Article  Google Scholar 

  25. 25.

    M. Dressler, F. Dombrowski, U. Simon, J. Börnstein, V.D. Hodoroaba, M. Feigl, S. Grunow, R. Gildenhaar, M. Neumann, J. Eur. Ceram. Soc. 31, 523 (2011)

    Article  Google Scholar 

  26. 26.

    Y. Masuda, T. Tateishi, K. Matsubara, R. Ogawa, Y. Kawate, Jpn. J. Appl. Phys. 30, 1390 (1991)

    ADS  Article  Google Scholar 

  27. 27.

    H. Nian, S.H. Hahn, K.-K. Koo, E.W. Shin, E.J. Kim, Mater. Lett. 63, 2246 (2009)

    Article  Google Scholar 

  28. 28.

    S. Mridha, D. Basak, Mater. Res. Bull. 42, 875 (2007)

    Article  Google Scholar 

  29. 29.

    M. Bouderbala, S. Hamzaoui, B. Amrani, A.H. Reshak, M. Adnane, T. Sahraoui, M. Zerdali, Phys. B 403, 3326 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    L. Cui, G.-G. Wang, H.-Y. Zhang, R. Sun, X.-P. Kuang, J.-C. Han, Ceram. Int. 39, 3261 (2013)

    Article  Google Scholar 

  31. 31.

    S.-S. Lin, J.-L. Huang, Surf. Coat. Technol. 185, 222 (2004)

    Article  Google Scholar 

  32. 32.

    B.J. Jin, S.H. Bae, S.Y. Lee, S. Im, Mater. Sci. Eng. 71, 301 (2000)

    Article  Google Scholar 

  33. 33.

    S. Chawla, K. Jayanthi, S. Singh, H. Chander, J. Cryst. Growth 310, 3517 (2008)

    ADS  Article  Google Scholar 

  34. 34.

    A.B. Djurisic, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Nanotech. 18, 095702 (2007)

    ADS  Article  Google Scholar 

  35. 35.

    D. Berger, E.T. Kubaski, T. Sequinel, R.M. da Silva, S.M. Tebcherani, J.A. Varela, Luminescence 28, 942 (2013)

    Article  Google Scholar 

  36. 36.

    Y. Li, F.D. Valle, M. Simonnet, I. Yamada, J.-J. Delaunay, Appl. Phys. Lett. 94, 023110 (2009)

    ADS  Article  Google Scholar 

  37. 37.

    Z. Xiao, Y. Liu, J. Zhang, D. Zhao, Y. Lu, D. Shen, X. Fan, Semicond. Sci. Technol. 20, 796 (2005)

    ADS  Article  Google Scholar 

  38. 38.

    S.B. Zhang, S.-H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)

    ADS  Article  Google Scholar 

  39. 39.

    S. Kumar, Deepika, M. Tripathi, P. Vaibhav, A. Kumar, R. Kumar, R.J. Choudhary D.M. Phase, J. Magn. Magn. Mater. 419, 68 (2016)

  40. 40.

    D. Kim, H. Kang, J.-M. Kim, H. Kim, Appl. Surf. Sci. 257, 3776 (2011)

    ADS  Article  Google Scholar 

  41. 41.

    Y. Ma, G.T. Du, T.P. Yang, D.L. Qiu, X. Zhang, H.J. Yang, Y.T. Zhang, B.J. Zhao, X.T. Yang, D.L. Liu, J. Cryst. Growth 255, 303 (2003)

    ADS  Article  Google Scholar 

  42. 42.

    K. Nakahara, T. Tanabe, H. Takasu, P. Fons, K. Iwata, A. Yamada, K. Matsubara, R. Hunger, S. Niki, Jpn. J. Appl. Phys. 40, 250 (2001)

    ADS  Article  Google Scholar 

Download references


This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1D1A1B07050792).

Author information



Corresponding author

Correspondence to Jae-Young Leem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Leem, JY. Optimal temperature of the sol–gel solution used to fabricate high-quality ZnO thin films via the dip-coating method for highly sensitive UV photodetectors. J. Korean Phys. Soc. 78, 504–509 (2021). https://doi.org/10.1007/s40042-021-00061-x

Download citation


  • Zinc oxide
  • Sol–gel
  • Dip-coating method
  • Photoluminescence
  • Photodetector