Motif dynamics in signed directional complex networks

A Correction to this article was published on 09 April 2021

This article has been updated

Abstract

Complex networks evolve and vary their structure as time goes by. In particular, the links in those networks have both a sign and a directionality. To understand their structural principles, we measure the network motifs, which are patterns that appear much more than one would expect in randomized networks, considering both link properties. We propose motif dynamics, which is a study to investigate the change in the number of motifs, and applied the motif dynamics to an open evolving network model and empirical data. We confirm that a non-cyclic motif has a greater correlation with the system size than a cyclic structural motif. Furthermore, the motif dynamics can give us insight into friendship between freshmen in a university.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

References

  1. 1.

    A. Paranjape, A.R. Benson, J. Leskovec, in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining 601-610 (2017)

  2. 2.

    A. Li, S.P. Cornelius, Y.-Y. Liu, L. Wang, A.-L. Barabási, Science 358, 1042 (2017)

    ADS  Article  Google Scholar 

  3. 3.

    G. Cencetti, F. Battiston, B. Lepri, M. Karsai, arXiv preprint arXiv:2010.03404 (2020)

  4. 4.

    A.R. Benson, D.F. Gleich, J. Leskovec, Science 353, 163 (2016)

    ADS  Article  Google Scholar 

  5. 5.

    L. Peel, J.-C. Delvenne, R. Lambiotte, Proc. Nat. Acad. Sci. 115, 4057 (2018)

    Article  Google Scholar 

  6. 6.

    A. Kirkley, G.T. Cantwell, M. Newman, Phys. Rev. E 99, 012320 (2019)

    ADS  Article  Google Scholar 

  7. 7.

    S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, U. Alon, Phys. Rev. E. 68, 026127 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    R.J. Prill, P.A. Iglesias, A. Levchenko, PLoS Biol. 3, e343 (2005)

    Article  Google Scholar 

  9. 9.

    J. Grilli, G. Barabás, M.J. Michalska-Smith, S. Allesina, Nature 548, 210 (2017)

    ADS  Article  Google Scholar 

  10. 10.

    R.D. Luce, A.D. Perry, Psychometrika 14, 95 (1949)

    MathSciNet  Article  Google Scholar 

  11. 11.

    D.J. Watts, S.H. Strogat, Nature 393, 440 (1998)

    ADS  Article  Google Scholar 

  12. 12.

    J.-P. Onnela, J. Saramäki, J. Kertész, K. Kaski, Phys. Rev. E. 71, 065103 (2005)

    ADS  Article  Google Scholar 

  13. 13.

    T. Shimada, Sci. Rep. 4, 4082 (2014)

    ADS  Article  Google Scholar 

  14. 14.

    R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Science 298, 824 (2002)

    ADS  Article  Google Scholar 

  15. 15.

    O. Sporns, R. Kötter, PLoS Biol. 2, e369 (2004)

    Article  Google Scholar 

  16. 16.

    U. Alon, Nat. Rev. Genet. 8, 450 (2007)

    Article  Google Scholar 

  17. 17.

    G. Facchetti, G. Iacono, C. Altafini, Proc. Nat. Acad. Sci. 108, 20953 (2011)

    ADS  Article  Google Scholar 

  18. 18.

    Y.J. Kim, M. Roh, S.-Y. Jeong, S.-W. Son, J. Korean Phys. Soc. 65, 1709 (2014)

    ADS  Article  Google Scholar 

  19. 19.

    Y.J. Kim, M. Roh, S.-W. Son, J. Korean Phys. Soc. 64, 341 (2014)

    ADS  Article  Google Scholar 

  20. 20.

    Y. Murase, T. Shimada, N. Ito, N. J. Phys. 12, 063021 (2010)

    Article  Google Scholar 

  21. 21.

    Y. Murase, T. Shimada, N. Ito, P. A. Rikvold, in Proceedings of the International Conference on Social Modeling and Simulation, plus Econophysics Colloquium 2014 (Springer, Cham, 2015) pp. 175–186

  22. 22.

    F. Ogushi, J. Kertész, K. Kaski, T. Shimada, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  23. 23.

    Y. Murase, P.A. Rikvold, N. J. Phys. 20, 083023 (2018)

    Article  Google Scholar 

  24. 24.

    F. Ogushi, J. Kertész, K. Kaski, T. Shimada, R. Soc. Open Sci. 6, 181471 (2019)

    ADS  Article  Google Scholar 

  25. 25.

    J. Kunegis, in Proc. Int. Conf. on World Wide Web Companion pp. 1343–1350 (2013)

  26. 26.

    F. Iorio, M. Bernardo-Faura, A. Gobbi, T. Cokelaer, G. Jurman, J. Saez-Rodriguez, BMC Bioinform. 17, 542 (2016)

    Article  Google Scholar 

  27. 27.

    W.Z. Lidicker Jr., Bioscience 29, 475 (1979)

    Article  Google Scholar 

  28. 28.

    S. Sahney, M.J. Benton, P.A. Ferry, Biol. Lett. 6, 544 (2010)

    Article  Google Scholar 

  29. 29.

    H. J. Park, Y. Pichugin, A. Traulsen, bioRxiv (2020)

  30. 30.

    G.G. Van de Bunt, M.A. Van Duijn, T.A. Snijders, Comput. Math. Org. Theo. 5, 167 (1999)

    Article  Google Scholar 

  31. 31.

    Chess network dataset–KONECT (2016)

  32. 32.

    Wikipedia elections network dataset–KONECT (2016)

  33. 33.

    J. Leskovec, D. Huttenlocher, J. Kleinberg, in Proc. Int. Conf. on Weblogs and Social Media (2010)

  34. 34.

    G. Freytag, E.J. MacEwan, Freytag’s technique of the drama: an exposition of dramatic Composition and Art. (Scott, Foresman and Company, 1908)

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea through the Grant No. NRF-2020R1A2C2010875 funded by the Korea government.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mi Jin Lee or Seung-Woo Son.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to an unfortunate oversight, the correspondence author of this article has been given erroneously. Corresponding authors of this paper should be changed to Seung Woo Son and Mi Jin Lee.W

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Lee, M.J. & Son, SW. Motif dynamics in signed directional complex networks. J. Korean Phys. Soc. 78, 535–541 (2021). https://doi.org/10.1007/s40042-021-00058-6

Download citation

Keywords

  • Network motifs
  • Signed directional complex networks
  • Temporal networks