Skip to main content
Log in

Electronic band structure of Bi-intercalate layers in graphene and SiC(0001)

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A potential way to tune the electronic band structure of graphene is to intercalate foreign atoms in the interface between graphene and substrate. However, such an intercalate layer covered by graphene is difficult to directly study with microscopic probes, and relatively little is known about its crystal and electronic structures. In this work, we study epitaxial graphene on SiC(0001) intercalated by bismuth atoms by means of angle-resolved photoemission spectroscopy. We reveal the electronic band structure of Bi-intercalate layers, from which we could identify two distinct phases, one is metallic and the other is insulating. The metallic phase composed of closely packed Bi atoms shows nearly free electron bands that are repeated to follow the period of SiC(0001)-(1 \(\times \) 1). The lower coverage insulating phase shows characteristic flat bands in the period of SiC(0001)-(\(\sqrt{3} {\times } \sqrt{3}\))R30\(^\circ \) with respect to the surface lattice constant of SiC(0001). Even though there exists such two distinct phases in the Bi intercalate layer, the doping level of graphene is found to vary rather continuously with the coverage of Bi. Based on the observed band structures and Bi 5d core-level spectra, we suggest a structural model for the metallic and insulating phases of Bi-terminated SiC(0001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  4. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  5. A. Bostwick, T. Ohta, Th Seyller, K. Horn, E. Rotenberg, Nat. Phys. 3, 36 (2007)

    Article  Google Scholar 

  6. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  7. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012)

    Article  ADS  Google Scholar 

  8. F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, R. Claessen, Science 21, 287 (2017)

    Article  ADS  Google Scholar 

  9. M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, J. Fabian, Phys. Rev. B 80, 235431 (2009)

    Article  ADS  Google Scholar 

  10. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, Th Seyller, Nat. Mater. 8, 203 (2009)

    Article  ADS  Google Scholar 

  11. K.V. Emtsev, F. Speck, Th Seyller, L. Ley, J.D. Riley, Phys. Rev. B 77, 155303 (2008)

    Article  ADS  Google Scholar 

  12. R.A. Bueno, I. Palacio, C. Munuera, L. Aballe, M. Foerster, W. Strupinski, M. García-Hernández, J.A. Martín-Gago, M.F. López, Appl. Surf. Sci. 466, 51 (2019)

    Article  ADS  Google Scholar 

  13. C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke, Phys. Rev. Lett. 103, 246804 (2009)

    Article  ADS  Google Scholar 

  14. S. Oida, F.R. McFeely, J.B. Hannon, R.M. Tromp, M. Copel, Z. Chen, Y. Sun, D.B. Farmer, J. Yurkas, Phys. Rev. B 82, 041411(R) (2010)

    Article  ADS  Google Scholar 

  15. C. Xia, S. Watcharinyanon, A.A. Zakharov, R. Yakimova, L. Hultman, L.I. Johansson, C. Virojanadara, Phys. Rev. B 85, 045418 (2012)

    Article  ADS  Google Scholar 

  16. K.V. Emtsev, A.A. Zakharov, C. Coletti, S. Forti, U. Starke, Phys. Rev. B 84, 125423 (2011)

    Article  ADS  Google Scholar 

  17. I. Gierz, T. Suzuki, R.T. Weitz, D.S. Lee, B. Krauss, C. Riedl, U. Starke, H. Höchst, J.H. Smet, C.R. Ast, K. Kern, Phys. Rev. B 81, 235408 (2010)

    Article  ADS  Google Scholar 

  18. D. Marchenko, A. Varykhalov, J. Sánchez-Barriga, Th Seyller, O. Rader, Appl. Phys. Lett. 108, 172405 (2016)

    Article  ADS  Google Scholar 

  19. A. Stöhr, S. Forti, S. Link, A.A. Zakharov, K. Kern, U. Starke, H.M. Benia, Phys. Rev. B 94, 085431 (2016)

    Article  ADS  Google Scholar 

  20. C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.H. Smet, U. Starke, Phys. Rev. B 81, 235401 (2010)

    Article  ADS  Google Scholar 

  21. Z.Y. Al Balushi, K. Wang, R.K. Ghosh, R.A. Vilá, S.M. Eichfeld, J.D. Caldwell, X. Qin, Y.-C. Lin, P.A. DeSario, G. Stone, S. Subramanian, D.F. Paul, R.M. Wallace, S. Datta, J.M. Redwing, J.A. Robinson, Nat. Mater. 15, 1166 (2016)

    Article  ADS  Google Scholar 

  22. C.-H. Hsu, V. Ozolins, F.-C. Chuang, Surf. Sci. 616, 149 (2013)

    Article  ADS  Google Scholar 

  23. M. Ostler, F. Speck, M. Gick, Th Seyller, Phys. Stat. Sol. B 247, 2924 (2010)

    Article  ADS  Google Scholar 

  24. W.J. Shin, Y. Sohn, S.H. Ryu, M. Huh, S.W. Jung, K.S. Kim, J. Korean Phys. Soc. 76, 44 (2020)

    Article  ADS  Google Scholar 

  25. W.J. Shin, S.W. Jung, Y. Sohn, S.H. Ryu, M. Huh, K.S. Kim, Curr. Appl. Phys. 24, 484 (2020)

    Article  ADS  Google Scholar 

  26. S. Doniach, M. Sunjic, J. Phys. C Solid State 3, 285 (1970)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea (Grants No. NRF-2020R1A2C2102469, NRF-2017R1A5A1014862, NRF-2020K1A3A7A09080364), and the Future-leading Research Initiative of Yonsei University (2019-22-0079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Su Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, Y., Jung, S.W., Göhler, F. et al. Electronic band structure of Bi-intercalate layers in graphene and SiC(0001). J. Korean Phys. Soc. 78, 157–163 (2021). https://doi.org/10.1007/s40042-020-00055-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00055-1

Keywords

Navigation