Skip to main content

Advertisement

Log in

A systematic review of chromogranin A (CgA) and its biomedical applications, unveiling its structure-related functions

  • Review
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Chromogranin A (CgA), which is an intrinsically disordered protein that belongs to the granin family, was first discovered in the bovine adrenal medulla, and later identified in various organs. Under certain physiological conditions, CgA is cleaved into functionally diverse peptides, such as vasostatin-1, pancreastatin, and catestatin. In this review, we first describe the historical and systematic challenges for elucidating the molecular structures of CgA and its derived peptides and give a perspective of utilizing emerging techniques through integrative approaches. Subsequently, we review specific biological processes associated with CgA and its derived peptides in the neuroendocrine, immune, and digestive systems. Finally, we discuss biomedical applications of CgA as a biomarker, suggesting future directions toward translational and precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.T. O’Connor, L.J. Deftos, Secretion of chromogranin A by peptide-producing endocrine neoplasms. N Engl J Med 314(18), 1145–1151 (1986)

    Google Scholar 

  2. D.G. Munoz et al., Chromogranin A-like immunoreactivity in the human brain: distribution in bulbar medulla and cerebral cortex. Neuroscience 34(3), 533–543 (1990)

    Google Scholar 

  3. J.M. Lauweryns et al., Chromogranin in bronchopulmonary neuroendocrine cells. Immunocytochemical detection in human, monkey, and pig respiratory mucosa. J Histochem Cytochem 35(1), 113–118 (1987)

    Google Scholar 

  4. L. Taupenot, K.L. Harper, D.T. O’Connor, The chromogranin-secretogranin family. N Engl J Med 348(12), 1134–1149 (2003)

    Google Scholar 

  5. N.R. Mahapatra et al., Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115(7), 1942–1952 (2005)

    Google Scholar 

  6. M. El-Salhy, O.H. Gilja, T. Hausken, Chromogranin A cells in the stomachs of patients with sporadic irritable bowel syndrome. Mol Med Rep 10(4), 1753–1757 (2014)

    Google Scholar 

  7. B.D. Stadinski et al., Chromogranin A is an autoantigen in type 1 diabetes. Nat Immunol 11(3), 225–231 (2010)

    Google Scholar 

  8. G.K. Bandyopadhyay et al., Catestatin (chromogranin A352–372) and novel effects on mobilization of fat from adipose tissue through regulation of adrenergic and leptin signaling. J. Biol. Chem. 287(27), 23141–23151 (2012)

    Google Scholar 

  9. J.P. Brion et al., Synaptophysin and chromogranin A immunoreactivities in senile plaques of Alzheimer’s disease. Brain Res 539(1), 143–150 (1991)

    Google Scholar 

  10. H. Blaschko et al., Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215(5096), 58–59 (1967)

    ADS  Google Scholar 

  11. P. Banks, K. Helle, The release of protein from the stimulated adrenal medulla. Biochem J 97(3), 40C-41C (1965)

    Google Scholar 

  12. D. Hopwood, An immunohistochemical study of the adrenal medulla of the ox. Histochemie 13(4), 323–330 (1968)

    Google Scholar 

  13. U.M. Benedum et al., The primary structure of human secretogranin I (chromogranin B): comparison with chromogranin A reveals homologous terminal domains and a large intervening variable region. Embo j 6(5), 1203–1211 (1987)

    Google Scholar 

  14. R. Fischer-Colbrie et al., Chromogranin C: a third component of the acidic proteins in chromaffin granules. J Neurochem 47(1), 318–321 (1986)

    Google Scholar 

  15. M. Stridsberg et al., Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol 144(1), 49–59 (1995)

    Google Scholar 

  16. F. Trebak et al., A potential role for the secretogranin II-derived peptide EM66 in the hypothalamic regulation of feeding behaviour. J Neuroendocrinol (2017). https://doi.org/10.1111/jne.12459

    Article  Google Scholar 

  17. K.B. Helle, D. Aunis, A Physiological Role for the Granins as Prohormones for Homeostatically Important Regulatory Peptides?, in Chromogranins: Functional and Clinical Aspects, K.B. Helle, D. Aunis, (eds). (Springer US: Boston, MA, 2002), pp. 389–397

  18. K.B. Helle, Regulatory peptides from chromogranin A and secretogranin II: putative modulators of cells and tissues involved in inflammatory conditions. Regul Pept 165(1), 45–51 (2010)

    Google Scholar 

  19. R.R. Sharp, E.P. Richards, Analysis of the carbon-13 and proton NMR spectra of bovine chromaffin granules. Biochim Biophys Acta 497(1), 14–28 (1977)

    Google Scholar 

  20. J.M. Porcel, Biomarkers in the diagnosis of pleural diseases: a 2018 update. Ther Adv Respir Dis 12, 1753466618808660 (2018)

    Google Scholar 

  21. D. Theodorescu et al., Cathepsin D and chromogranin A as predictors of long term disease specific survival after radical prostatectomy for localized carcinoma of the prostate. Cancer 80(11), 2109–2119 (1997)

    Google Scholar 

  22. O. Nagakawa et al., Effect of chromogranin A (pancreastatin) fragment on invasion of prostate cancer cells. Cancer Lett 147(1–2), 207–213 (1999)

    Google Scholar 

  23. P.A. Abrahamsson, Neuroendocrine cells in tumour growth of the prostate. Endocr Relat Cancer 6(4), 503–519 (1999)

    Google Scholar 

  24. J.T. Wu et al., Different patterns of serum chromogranin A in patients with prostate cancer with and without undergoing hormonal therapy. J Clin Lab Anal 13(6), 308–311 (1999)

    Google Scholar 

  25. C. Niedworok et al., Serum Chromogranin A as a complementary marker for the prediction of prostate cancer-specific survival. Pathol Oncol Res 23(3), 643–650 (2017)

    Google Scholar 

  26. J. Sundin et al., Fecal chromogranins and secretogranins are linked to the fecal and mucosal intestinal bacterial composition of IBS patients and healthy subjects. Sci Rep 8(1), 16821 (2018)

    ADS  Google Scholar 

  27. J. Wollam et al., Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell Tissue Res 368(3), 487–501 (2017)

    Google Scholar 

  28. E.M. Muntjewerff et al., Catestatin as a target for treatment of inflammatory diseases. Front Immunol (2018). https://doi.org/10.3389/fimmu.2018.02199

    Article  Google Scholar 

  29. A. Zhernakova et al., Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352(6285), 565–569 (2016)

    ADS  Google Scholar 

  30. Y. Ringel, T. Ringel-Kulka, The intestinal microbiota and irritable bowel syndrome. J Clin Gastroenterol 49(Suppl 1), S56–S59 (2015)

    Google Scholar 

  31. H. Tilg, A.R. Moschen, Microbiota and diabetes: an evolving relationship. Gut 63(9), 1513–1521 (2014)

    Google Scholar 

  32. C.A. Thaiss et al., The microbiome and innate immunity. Nature 535(7610), 65–74 (2016)

    ADS  Google Scholar 

  33. H. Kamisetty, S. Ovchinnikov, D. Baker, Assessing the utility of coevolution-based residue–residue contact predictions in a sequence- and structure-rich era. Proc. Natl. Acad. Sci. 110(39), 15674–15679 (2013)

    ADS  Google Scholar 

  34. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J Mol Graph. 14(1): 33–8, 27–8 (1996)

  35. T. Ha et al., Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93(13), 6264–6268 (1996)

    ADS  Google Scholar 

  36. G.T. Heller, F.A. Aprile, M. Vendruscolo, Methods of probing the interactions between small molecules and disordered proteins. Cell Mol Life Sci 74(17), 3225–3243 (2017)

    Google Scholar 

  37. C.A. Mosley et al., Biogenesis of the secretory granule: chromogranin A coiled-coil structure results in unusual physical properties and suggests a mechanism for granule core condensation. Biochemistry 46(38), 10999–11012 (2007)

    Google Scholar 

  38. G. Blobel, Intracellular protein topogenesis. Proc Natl Acad Sci U S A 77(3), 1496–1500 (1980)

    ADS  Google Scholar 

  39. O. Louthan, Chromogranin A in physiology and oncology. Folia Biol (Praha) 57(5), 173–181 (2011)

    Google Scholar 

  40. J. Wang, J.A. Feng, Exploring the sequence patterns in the alpha-helices of proteins. Protein Eng 16(11), 799–807 (2003)

    Google Scholar 

  41. M. Fioramonte et al., Analysis of secondary structure in proteins by chemical cross-linking coupled to MS. Proteomics 12(17), 2746–2752 (2012)

    Google Scholar 

  42. A. Daniels et al., The internal structure of the chromaffin granule. Proc R Soc Lond B Biol Sci 187(1088), 353–361 (1974)

    ADS  Google Scholar 

  43. Y.P. Loh et al., Chromogranin A and derived peptides in health and disease. J. Mol. Neurosci. 48(2), 347–356 (2012)

    Google Scholar 

  44. N. Jin et al., N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes. Proc Natl Acad Sci U S A 112(43), 13318–13323 (2015)

    ADS  Google Scholar 

  45. N.L. Eskeland et al., Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway. J. Clin. Investig. 98(1), 148–156 (1996)

    Google Scholar 

  46. Q. Jiang et al., Proteolytic cleavage of chromogranin A (CgA) by plasmin selective liberation of a specific bioactive CgA fragment that regulates catecholamine release. J. Biol. Chem. 276(27), 25022–25029 (2001)

    Google Scholar 

  47. A. Lupas, M. Van Dyke, J. Stock, Predicting coiled coils from protein sequences. Science 252(5009), 1162–1164 (1991)

    ADS  Google Scholar 

  48. Z. Dosztanyi et al., The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347(4), 827–839 (2005)

    Google Scholar 

  49. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47(D1): D506-d515 (2019)

  50. L.M. Gregoret, R.T. Sauer, Tolerance of a protein helix to multiple alanine and valine substitutions. Fold Des 3(2), 119–126 (1998)

    Google Scholar 

  51. S.S. Murray et al., The gene for human chromogranin A (CgA) is located on chromosome 14. Biochem Biophys Res Commun 142(1), 141–146 (1987)

    Google Scholar 

  52. D. Simon-Chazottes et al., Assignment of the chromogranin A (Chga) locus to homologous regions on mouse chromosome 12 and rat chromosome 6. Genomics 17(1), 252–255 (1993)

    Google Scholar 

  53. A.B. Dietz, H.L. Neibergs, J.E. Womack, Assignment of eight loci to bovine syntenic groups by use of PCR: extension of a comparative gene map. Mamm Genome 3(2), 106–111 (1992)

    Google Scholar 

  54. S.H. Yoo, Identification of the calcium-dependent calmodulin-binding region of chromogranin A. Biochemistry 31(26), 6134–6140 (1992)

    Google Scholar 

  55. B.S. Sahu et al., Molecular interactions of the physiological anti-hypertensive peptide catestatin with the neuronal nicotinic acetylcholine receptor. J. Cell Sci. 125(11), 2787–2787 (2012)

    Google Scholar 

  56. P.K.R. Allu et al., Naturally occurring variants of the dysglycemic peptide pancreastatin. J. Biol. Chem. 289(7), 4455–4469 (2014)

    Google Scholar 

  57. D. Schneidman-Duhovny et al., A method for integrative structure determination of protein-protein complexes. Bioinformatics 28(24), 3282–3289 (2012)

    Google Scholar 

  58. D. Russel et al., Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 10(1), e1001244–e1001244 (2012)

    Google Scholar 

  59. F. Alber et al., The molecular architecture of the nuclear pore complex. Nature 450(7170), 695–701 (2007)

    ADS  Google Scholar 

  60. D. Russel et al., The structural dynamics of macromolecular processes. Curr. Opin. Cell Biol. 21(1), 97–108 (2009)

    Google Scholar 

  61. K. Lasker et al., Integrative structure modeling of macromolecular assemblies from proteomics data. Mol. Cell. Proteomics 9(8), 1689–1702 (2010)

    Google Scholar 

  62. B. Webb et al., Integrative structure modeling with the integrative modeling platform. Protein Sci. 27(1), 245–258 (2018)

    Google Scholar 

  63. S.J. Kim et al., Integrative structure and functional anatomy of a nuclear pore complex. Nature 555(7697), 475–482 (2018)

    ADS  Google Scholar 

  64. J. Kosinski et al. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science (New York), 352(6283): 363–365 (2016)

  65. S. Viswanath et al., The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Mol. Biol. Cell 28(23), 3298–3314 (2017)

    Google Scholar 

  66. P. Chandramouli et al. Structure of the mammalian 80S ribosome at 8.7 A resolution. Structure (London, England: 1993), 16(4): p. 535–48 (2008)

  67. L. Carter et al., Prion protein—antibody complexes characterized by chromatography-coupled small-angle X-Ray scattering. Biophys. J. 109(4), 793–805 (2015)

    ADS  Google Scholar 

  68. W. Gan et al. Probing Oligomerized Conformations of Defensin in the Membrane. Methods Mol Biol 1529(1940–6029 (Electronic)): 353–362 (2017)

  69. E.F. Pettersen et al., UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13), 1605–1612 (2004)

    Google Scholar 

  70. J. Zhu et al. Refining homology models by combining replica-exchange molecular dynamics and statistical potentials. Proteins: Structure, Function and Genetics, 72(4): 1171–1188 (2008)

  71. S. Piana, K. Lindorff-Larsen, D.E. Shaw, Protein folding kinetics and thermodynamics from atomistic simulation. Proc. Natl. Acad. Sci. U.S.A. 109(44), 17845–17850 (2012)

    ADS  Google Scholar 

  72. A. Raval et al. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins: Structure, Function, and Bioinformatics 80(8): p. n/a-n/a (2012)

  73. A. Hospital et al., Advances and applications in bioinformatics and chemistry dovepress molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 8, 37–47 (2015)

    Google Scholar 

  74. S. Kraszewski et al., A molecular dynamics study of catestatin docked on nicotinic acetylcholine receptors to identify amino acids potentially involved in the binding of chromogranin A fragments. Phys Chem Chem Phys 17(26), 17454–17460 (2015)

    Google Scholar 

  75. Z. Huang, C.F. Wong, Docking flexible peptide to flexible protein by molecular dynamics using two implicit-solvent models: an evaluation in protein kinase and phosphatase systems. J. Phys. Chem. B 113(43), 14343–14354 (2009)

    Google Scholar 

  76. A. Ben-Shimon, Y. Masha, Niv, AnchorDock: blind and flexible anchor-driven peptide docking. Structure 23(5), 929–940 (2015)

    Google Scholar 

  77. U. Pieper et al., ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 42(D1), D336–D346 (2014)

    Google Scholar 

  78. K. Lindorff-Larsen et al., Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J. Am. Chem. Soc. 134(8), 3787–3791 (2012)

    Google Scholar 

  79. H. Chen, Binding induced intrinsically disordered protein folding with molecular dynamics simulation. Adv. Exp. Med. Biol. 827, 111–121 (2015)

    Google Scholar 

  80. A. Apicella et al., Molecular dynamics simulations of the intrinsically disordered protein amelogenin. J. Biomol. Struct. Dyn. 35(8), 1813–1823 (2017)

    Google Scholar 

  81. R. Bomblies et al., Transient helicity in intrinsically disordered Axin-1 studied by NMR spectroscopy and molecular dynamics simulations. PLoS ONE 12(3), e0174337–e0174337 (2017)

    Google Scholar 

  82. T. Kosciolek, D.W.A. Buchan, D.T. Jones, Predictions of Backbone Dynamics in Intrinsically Disordered Proteins Using de Novo Fragment-Based Protein Structure Predictions. Scient Rep 7(1), (2017)

  83. E.B. Gibbs, E.C. Cook, S.A. Showalter, Application of NMR to studies of intrinsically disordered proteins. Arch. Biochem. Biophys. 628, 57–70 (2017)

    Google Scholar 

  84. Q. Wei et al., NMR backbone assignment of large proteins by using 13 C α -only triple-resonance experiments. Chem. Eur. J. 22(28), 9556–9564 (2016)

    Google Scholar 

  85. N. Goradia et al., An approach to NMR assignment of intrinsically disordered proteins. ChemPhysChem 16(4), 739–746 (2015)

    Google Scholar 

  86. H.D. Mertens, D.I. Svergun, Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 172(1), 128–141 (2010)

    Google Scholar 

  87. D Schneidman-Duhovny, M. Hammel, A. Sali, FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic acids research, 38(Web Server issue): p. W540–4 (2010)

  88. D. Schneidman-Duhovny et al., FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res. 44(W1), W424–W429 (2016)

    Google Scholar 

  89. D. Schneidman-Duhovny, M. Hammel, Modeling Structure and Dynamics of Protein Complexes with SAXS Profiles. Methods in molecular biology (Clifton, N.J.), 1764: p. 449–473 (2018)

  90. F. Poitevin et al., AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nucleic Acids Res. 39(SUPPL. 2), W184–W189 (2011)

    Google Scholar 

  91. C.J. Knight, J.S. Hub, WAXSiS: a web server for the calculation of SAXS/WAXS curves based on explicit-solvent molecular dynamics. Nucleic Acids Res. 43(W1), W225–W230 (2015)

    Google Scholar 

  92. K. Stovgaard et al., Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models. BMC Bioinform 11(1), 429–429 (2010)

    Google Scholar 

  93. J.S. Kim, B. Afsari, G.S. Chirikjian, Cross-validation of data compatibility between small angle X-ray scattering and cryo-electron microscopy. J Comput Biol 24(1), 13–30 (2017)

    MathSciNet  Google Scholar 

  94. N. Sibille, P. Bernadó, Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS. Biochem. Soc. Trans. 40(5), 955–962 (2012)

    Google Scholar 

  95. A.F. Kikhney, D.I. Svergun, A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS. Lett 589(19), 2570–2577 (2015)

    Google Scholar 

  96. M. Kachala, E. Valentini, D.I. Svergun, Application of SAXS for the Structural Characterization of IDPs (Springer, Cham, 2015), pp. 261–289

    Google Scholar 

  97. J. Frank, Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct. 31(1), 303–319 (2002)

    Google Scholar 

  98. R.S Dillard et al. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy (NIH Public Access 2018). p. 406–419

  99. A. Leitner et al. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines, (Elsevier Current Trends, 2016), p. 20–32

  100. L.A. Earl et al., Cryo-EM: beyond the microscope. Curr. Opin. Struct. Biol. 46, 71–78 (2017)

    Google Scholar 

  101. S.M Kelly, T.J. Jess, N.C. Price NC, How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA) Proteins Protemics. 1751(2) 119–139 (2005)

  102. N.J. Greenfield, Circular dichroism (CD) analyses of protein-protein interactions. 239–265 (2015)

  103. A. Drozdetskiy et al., JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43(W1), W389–W394 (2015)

    Google Scholar 

  104. J.D. Hirst, C.L. Brooks, Helicity, circular dichroism and molecular dynamics of proteins. J. Mol. Biol. 243(2), 173–178 (1994)

    Google Scholar 

  105. A. Thalhammer et al., Interaction of two intrinsically disordered plant stress proteins (COR15A and COR15B) with lipid membranes in the dry state. Biochim Biophys Acta 1798(9), 1812–1820 (2010)

    Google Scholar 

  106. C. Navarro-Retamal et al., Molecular dynamics simulations and CD spectroscopy reveal hydration-induced unfolding of the intrinsically disordered LEA proteins COR15A and COR15B from: Arabidopsis thaliana. Physical Chemistry Chemical Physics 18(37), 25806–25816 (2016)

    Google Scholar 

  107. A.N. Holding, XL-MS: Protein cross-linking coupled with mass spectrometry, p. 54–63 (2015)

  108. X. Zeng-Elmore et al., Molecular architecture of photoreceptor phosphodiesterase elucidated by chemical cross-linking and integrative modeling. J. Mol. Biol. 426(22), 3713–3728 (2014)

    Google Scholar 

  109. C. Schmidt, H. Urlaub, Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Curr Opin Struc Bio (2017). https://doi.org/10.1016/j.sbi.2017.10.005

    Article  Google Scholar 

  110. X. Wang et al., Molecular details underlying dynamic structures and regulation of the human 26S proteasome. Mol Cell Proteom 16(5), 840–854 (2017)

    Google Scholar 

  111. J. LoPiccolo et al., Assembly and molecular architecture of the phosphoinositide 3-kinase p85alpha homodimer. J Biol Chem 290(51), 30390–30405 (2015)

    Google Scholar 

  112. S.J. Kim et al., Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex. Mol Cell Proteomics 13(11), 2911–2926 (2014)

    Google Scholar 

  113. D. Pantazatos et al., Rapid refinement of crystallographic protein construct definition employing enhanced hydrogen/deuterium exchange MS. Proc. Natl. Acad. Sci. 101(3), 751–756 (2004)

    ADS  Google Scholar 

  114. S.W. Englander, Hydrogen exchange and mass spectrometry: a historical perspective. J. Am. Soc. Mass Spectrom. 17(11), 1481–1489 (2006)

    Google Scholar 

  115. L. Konermann, J. Pan, Y.H. Liu, Hydrogen exchange mass spectrometry for studying protein structure and dynamics, The Royal Society of Chemistry. p. 1224–1234 (2011)

  116. J. Claesen, T. Burzykowski, Computational methods and challenges in hydrogen/deuterium exchange mass spectrometry, p. 649-667 (2017)

  117. I Oganesyan, C Lento, D.J. Wilson, Contemporary hydrogen deuterium exchange mass spectrometry. (Academic Press 2018) p. 27–42

  118. Y. Kostyukevich et al. Hydrogen/deuterium exchange in mass spectrometry p. 811–853 (2018)

  119. T.R. Keppel, B.A. Howard, D.D. Weis, Mapping unstructured regions and synergistic folding in intrinsically disordered proteins with amide H/D exchange mass spectrometry. Biochemistry 50(40), 8722–8732 (2011)

    Google Scholar 

  120. D. Balasubramaniam, E.A. Komives, Hydrogen-Exchange Mass Spectrometry for the Study of Intrinsic Disorder in Proteins (Elsevier, Neterland, 2013), pp. 1202–1209

    Google Scholar 

  121. S.J. LeBlanc, P. Kulkarni, K.R. Weninger, Single molecule FRET: a powerful tool to study intrinsically disordered proteins. Biomolecules 8(4), 140 (2018)

    Google Scholar 

  122. T. Lee, C.R. Moran-Gutierrez, A.A. Deniz, Probing protein disorder and complexity at single-molecule resolution, (NIH Public Access, 2015) p. 26–34

  123. B. Schuler, Perspective: chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET. J Chem Phys 149(1), 010901 (2018)

    ADS  Google Scholar 

  124. M. Uhle et al., Proteomics tissue-based map of the human proteome. Science 347(6220), 1260419 (2015)

    Google Scholar 

  125. S.H. Yoo, Y.H. Huh, Y.S. Hur, Inositol 1,4,5-Trisphosphate receptor in chromaffin secretory granules and its relation to chromogranins. Cell. Mol. Neurobiol. 30(8), 1155–1161 (2010)

    Google Scholar 

  126. D. Belloni et al., The vasostatin-I fragment of chromogranin A inhibits VEGF-induced endothelial cell proliferation and migration. Faseb j 21(12), 3052–3062 (2007)

    Google Scholar 

  127. K.B. Helle, The chromogranin A-derived peptides vasostatin-I and catestatin as regulatory peptides for cardiovascular functions. Cardiovasc Res 85(1), 9–16 (2010)

    Google Scholar 

  128. L. Crippa et al., A new chromogranin A-dependent angiogenic switch activated by thrombin. Blood 121(2), 392–402 (2013)

    Google Scholar 

  129. S.K. Mahata et al., The catecholamine release-inhibitory “catestatin” fragment of chromogranin a: naturally occurring human variants with different potencies for multiple chromaffin cell nicotinic cholinergic responses. Mol Pharmacol 66(5), 1180–1191 (2004)

    MathSciNet  Google Scholar 

  130. Q.V. Ton, S.R. Hammes, Recent insights on circulating catecholamines in hypertension. Curr Hypertens Rep 16(12), 498 (2014)

    Google Scholar 

  131. M.F. Rabbi et al., Human catestatin alters gut microbiota composition in mice. Front Microbiol 7, 2151 (2016)

    Google Scholar 

  132. K. Lugardon et al., Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J. Biol. Chem. 275(15), 10745–10753 (2000)

    Google Scholar 

  133. V. Sciola et al., Plasma chromogranin a in patients with inflammatory bowel disease. Inflamm Bowel Dis 15(6), 867–871 (2009)

    Google Scholar 

  134. M.F. Rabbi et al., Reactivation of intestinal inflammation Is suppressed by catestatin in a murine model of colitis via M1 macrophages and not the gut microbiota. Front Immunol 8, 985 (2017)

    Google Scholar 

  135. S. Gordon, F.O. Martinez, Alternative activation of macrophages: mechanism and functions. Immunity 32(5), 593–604 (2010)

    Google Scholar 

  136. N. Eissa et al., Chromofungin ameliorates the progression of colitis by regulating alternatively activated macrophages. Front Immunol 8, 1131 (2017)

    Google Scholar 

  137. N.E. Preece et al., Conformational preferences and activities of peptides from the catecholamine release-inhibitory (catestatin) region of chromogranin A. Regul Pept 118(1–2), 75–87 (2004)

    Google Scholar 

  138. K. Lugardon et al., Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47–66)-derived peptide. J Biol Chem 276(38), 35875–35882 (2001)

    Google Scholar 

  139. D. Zhang et al., Two chromogranin a-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS ONE 4(2), e4501 (2009)

    ADS  Google Scholar 

  140. M. Thomaschewski et al., Is there any role for minimally invasive surgery in NET? Rev Endocrine Metab Diss 18(4), 443–457 (2017)

    Google Scholar 

  141. J. Hofland, W.T. Zandee, W.W. de Herder, Role of biomarker tests for diagnosis of neuroendocrine tumours. Nat Rev Endocrinol 14(11), 656–669 (2018)

    Google Scholar 

  142. M.S. Montesinos et al., The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse. J Neurosci 28(13), 3350–3358 (2008)

    Google Scholar 

  143. M. Courel et al., Secretory granule biogenesis in sympathoadrenal cells: identification of a granulogenic determinant in the secretory prohormone chromogranin A. J Biol Chem 281(49), 38038–38051 (2006)

    Google Scholar 

  144. S.K. Mahata et al., Neurotrophin activation of catecholamine storage vesicle protein gene expression: signaling to chromogranin a biosynthesis. Neuroscience 88(2), 405–424 (1999)

    Google Scholar 

  145. M. Willis et al., Chromogranin peptides in brain diseases. J Neural Transm 118(5), 727–735 (2011)

    Google Scholar 

  146. R. Weiler et al., A high ratio of chromogranin A to synaptin/synaptophysin is a common feature of brains in Alzheimer and Pick disease. FEBS Lett 263(2), 337–339 (1990)

    ADS  Google Scholar 

  147. E.Y. Hsiao et al., Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7), 1451–1463 (2013)

    Google Scholar 

  148. J.R. Gayen et al., A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis. J Biol Chem 284(42), 28498–28509 (2009)

    Google Scholar 

  149. J.T. Wu et al., Serum chromogranin A: early detection of hormonal resistance in prostate cancer patients. J Clin Lab Anal 12(1), 20–25 (1998)

    Google Scholar 

  150. F.U. Yarkac, O. Gokturk, O. Demir, Effect of non-surgical periodontal therapy on the degree of gingival inflammation and stress markers related to pregnancy. J Appl Oral Sci 26, e20170630 (2018)

    Google Scholar 

  151. E. Engvall, P. Perlmann, Enzyme-linked immunosorbent assay, Elisa 3 Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol 109(1), 129–135 (1972)

    Google Scholar 

  152. T. Popovici et al., Automated two-site immunofluorescent assay for the measurement of serum chromogranin A. Clin Biochem 47(1–2), 87–91 (2014)

    Google Scholar 

  153. C. RUO NEOLISA™ Chromogranin A. (2014)

  154. S. Sanduleanu et al., Serum chromogranin A as a screening test for gastric enterochromaffin-like cell hyperplasia during acid-suppressive therapy. Eur J Clin Invest 31(9), 802–811 (2001)

    Google Scholar 

  155. X. Yang et al., Diagnostic value of circulating chromogranin a for neuroendocrine tumors: a systematic review and meta-analysis. PLoS ONE 10(4), e0124884 (2015)

    Google Scholar 

  156. J.K. Ramage et al., Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut 61(1), 6 (2012)

    Google Scholar 

  157. K.J. Keck et al., Increased grade in neuroendocrine tumor metastases negatively impacts survival. Ann Surg Oncol 24(8), 2206–2212 (2017)

    Google Scholar 

  158. M.Y. Cho et al., Current trends of the incidence and pathological diagnosis of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) in Korea 2000–2009: multicenter study. Cancer Res Treat 44(3), 157–165 (2012)

    ADS  Google Scholar 

  159. T. Ito et al., Epidemiological trends of pancreatic and gastrointestinal neuroendocrine tumors in Japan: a nationwide survey analysis. J Gastroenterol 50(1), 58–64 (2015)

    ADS  Google Scholar 

  160. J.H. Fan et al., A nation-wide retrospective epidemiological study of gastroenteropancreatic neuroendocrine neoplasms in China. Oncotarget 8(42), 71699–71708 (2017)

    Google Scholar 

  161. K. Broedbaek, L. Hilsted, Chromogranin A as biomarker in diabetes. Biomarkers in medicine 10(11), 1181–1189 (2016)

    Google Scholar 

  162. G.K. Bandyopadhyay et al., Pancreastatin-dependent inflammatory signaling mediates obesity-induced insulin resistance. Diabetes 64(1), 104–116 (2015)

    Google Scholar 

  163. D. Escribano et al., Salivary biomarkers to monitor stress due to aggression after weaning in piglets. Res Vet Sci 123, 178–183 (2019)

    Google Scholar 

  164. D.F. Orr et al., The spectrum of endogenous human chromogranin A-derived peptides identified using a modified proteomic strategy. Proteomics 2(11), 1586–1600 (2002)

    Google Scholar 

  165. C.V. Taylor et al., Formation of the catecholamine release-inhibitory peptide catestatin from chromogranin A. Determination of proteolytic cleavage sites in hormone storage granules. J Biol Chem 275(30), 22905–22915 (2000)

    Google Scholar 

  166. R. Kirchmair et al., Molecular characterization of immunoreactivities of peptides derived from chromogranin A (GE-25) and from secretogranin II (secretoneurin) in human and bovine cerebrospinal fluid. Neuroscience 63(4), 1179–1187 (1994)

    Google Scholar 

  167. N. Biswas et al., Cathepsin L colocalizes with chromogranin a in chromaffin vesicles to generate active peptides. Endocrinology 150(8), 3547–3557 (2009)

    Google Scholar 

  168. B. Benyamin et al., Identification of novel loci affecting circulating chromogranins and related peptides. Hum Mol Genet 26(1), 233–242 (2017)

    Google Scholar 

  169. E. Gasteiger et al., Protein Identification and Analysis Tools on the ExPASy Server, in The Proteomics Protocols Handbook. ed. by J.M. Walker (Humana Press, Totowa, NJ, 2005), pp. 571–607

    Google Scholar 

  170. A.L. Iacangelo, L.E. Eiden, Chromogranin A: current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. Regul Pept 58(3), 65–88 (1995)

    Google Scholar 

  171. M. Nei, N. Saitou, The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

    Google Scholar 

  172. P. Bayer et al., Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280(2), 275–286 (1998)

    Google Scholar 

  173. A. Corti, F. Marcucci, T. Bachetti, Circulating chromogranin A and its fragments as diagnostic and prognostic disease markers. Pflugers Arch 470(1), 199–210 (2018)

    Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. Hansol Lee (Oh laboratory, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) and Dr. Kyusung Choi (Jeong laboratory, Graduate School of Medical science and Engineering, KAIST) for their invaluable assistance with the peer review before submission.

Funding

This study was supported by Korea Advanced Institute of Science and Technology (KAIST; G04180038), the KAIST Advanced Institute for Science-X Challenge (N11200065), KAIST Grand Challenge 30 project (KC30; N11200138), and National Research Foundation of Korea (NRF; 2019R1F1A1063373, 2020R1A2C1013246, 2020K1A3A7A09080399, and 2020R1A4A3079755), and the Basic Science Research Program through NRF (2019R1A6A1A10073887).

Author information

Authors and Affiliations

Authors

Contributions

K.H.C. and S.J.K. were responsible for the study design; K.H.C. and M.H.H. contributed to data collection, analysis, and interpretation; K.H.C. contributed to generating figures and tables; K.H.C, M.H.H, and S.J.K. wrote the manuscript.

Corresponding authors

Correspondence to Kyuhyung Choi or Seung Joong Kim.

Ethics declarations

Conflict of interest

None of the authors has any financial or personal relationships that could bias the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All authors agreed with the contents of this article and were informed by the corresponding author at submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 756 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K., Han, M. & Kim, S.J. A systematic review of chromogranin A (CgA) and its biomedical applications, unveiling its structure-related functions. J. Korean Phys. Soc. 78, 427–441 (2021). https://doi.org/10.1007/s40042-020-00042-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00042-6

Keywords

Navigation