Skip to main content
Log in

Long-range interactions in model colloidal dispersions with surface charge distributions

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The theoretical model, which is based on the density functional approach, has been developed for studying the electrostatic properties of colloidal dispersions (modified colloidal primitive model; MCPM) containing hard-spherical ions with a homogeneous surface charge distribution. The mean-spherical approximation for the multi-component charged ions has been used to account for the electrostatic ion correlation effects. The present study reflects the importance of the charge distribution of macroion in determining the ionic structure and mean forces acting on the macroions. Compared with the MCPM, the colloidal primitive model (CPM), on which the colloidal charge is assumed to be in the center of particle, shows very long-range electrostatic properties and mean force acting on the macroions because of the strong cross correlation between the hard-sphere contribution and the Coulomb interaction. The long-range attractions and repulsions in the charged colloidal dispersions originate from the entropic effects and are found at high packing fractions of the colloidal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edn. (Academic Press, London, 2006)

    MATH  Google Scholar 

  2. S.L. Carnie, G.M. Torrie, Adv. Chem. Phys. 56, 141 (1984)

    Google Scholar 

  3. P. Attard, Adv. Chem. Phys. 92, 1 (1996)

    Google Scholar 

  4. Y. Levin, Rep. Prog. Phys. 65, 1577 (2002)

    Article  ADS  Google Scholar 

  5. R.H. Ottewill, Langmuir 5, 4 (1989)

    Article  Google Scholar 

  6. N. Ise, T. Okubo, M. Sugimura, K. Ito, H.J. Nolte, J. Chem. Phys. 78, 536 (1983)

    Article  ADS  Google Scholar 

  7. N. Ise, M.V. Smalley, Phys. Rev. B 50, 16722 (1994)

    Article  ADS  Google Scholar 

  8. B.V.R. Tata, P.S. Mohanty, M.C. Valsakumara, Solid State Commun. 147, 360 (2008)

    Article  ADS  Google Scholar 

  9. P.A. Rundquist, S. Jagannathan, R. Kesavamoorthy, C. Brnardic, S. Xu, S.A. Asher, J. Chem. Phys. 94, 711 (1991)

    Article  ADS  Google Scholar 

  10. D. Frydel, Y. Levin, J. Chem. Phys. 138, 174901 (2013)

    Article  ADS  Google Scholar 

  11. D. Frydel, J. Chem. Phys. 145, 184703 (2016)

    Article  ADS  Google Scholar 

  12. K. Bohinc, G.V. Bossa, S. Gavryushov, S. May, J. Chem. Phys. 145, 234901 (2016)

    Article  ADS  Google Scholar 

  13. M. Hatlo, K. Bohinc, L. Lue, J. Chem. Phys. 132, 114102 (2010)

    Article  ADS  Google Scholar 

  14. K. Bohinc, J. Grime, L. Lue, Soft Matter 8, 5679 (2012)

    Article  ADS  Google Scholar 

  15. K. Bohinc, J. Rescic, L. Lue, Soft Matter 12, 4397 (2016)

    Article  ADS  Google Scholar 

  16. S. Spada, S. Gavryushov, K. Bohinc, J. Mol. Liq. 270, 178 (2018)

    Article  Google Scholar 

  17. S. Jang, G.R. Shin, S.-C. Kim, J. Chem. Phys. 147, 036101 (2017)

    Article  ADS  Google Scholar 

  18. S. Jang, G.R. Shin, S.-C. Kim, J. Korean Phys. Soc. 74, 30 (2019)

    Article  ADS  Google Scholar 

  19. H.M. Manzanilla-Granados, F. Jiménez-ángeles, M. Lozada-Cassou, J. Phys. Chem. B 115, 12094 (2011)

    Article  Google Scholar 

  20. H.M. Manzanilla-Granados, M. Lozada-Cassou, J. Phys. Chem. B 117, 11812 (2013)

    Article  Google Scholar 

  21. A. González-Calderón, M. Chávez-Páez, E. González-Tovar, M. Lozada-Cassou, J. Phys. Chem. B 122, 7002 (2018)

    Article  Google Scholar 

  22. A. González-Calderón, E. González-Tovar, M. Lozada-Cassou, The European Physical Journal Special Topics 227, 2375 (2019)

  23. M. Heo, G.R. Shin, S.-C. Kim, J. Stat. Mech. Theory and Experiment, P083207 (2019)

  24. Y. Rosenfeld, Phys. Rev. A 35, 938 (1987)

    Article  ADS  Google Scholar 

  25. J. Stein, D. Shalitin, Y. Rosenfeld, Phys. Rev. A 37, 4854 (1988)

    Article  ADS  Google Scholar 

  26. A.R. Denton, Phys. Rev. E 67, 011804 (2003)

    Article  ADS  Google Scholar 

  27. R. Roth, R. Evans, A. Lang, G.J. Kahl, J. Phys. Condens. Matter 14, 12063 (2002)

    Article  ADS  Google Scholar 

  28. Y. Yu, J. Wu, J. Chem. Phys. 117, 10156 (2002)

    Article  ADS  Google Scholar 

  29. Y. Yu, J. Wu, J. Chem. Phys. 118, 3835 (2003)

    Article  ADS  Google Scholar 

  30. E. Waisman, J.L. Lebowitz, J. Chem. Phys. 56, 3086 (1972)

    Article  ADS  Google Scholar 

  31. G. Rickayzen, Mol. Phys. 97, 721 (2011)

    Article  ADS  Google Scholar 

  32. L. Blum, Mol. Phys. 30, 1529 (1975)

    Article  ADS  Google Scholar 

  33. L. Blum, J.S. Høye, J. Phys. Chem. 81, 1311 (1977)

    Article  Google Scholar 

  34. K. Hiroike, Mol. Phys. 33, 1195 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  35. M.S. Wertheim, Phys. Rev. Lett. 10, 321 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  36. E. Thiele, J. Chem. Phys. 38, 1959 (1963)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2019R1A6A3A01090186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seanea Jang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Electronic residual contribution \(c^{(2)}_{{\mathrm{el}},ij}(r, \rho _{i})\)

Appendix: Electronic residual contribution \(c^{(2)}_{{\mathrm{el}},ij}(r, \rho _{i})\)

We used an analytic expression to calculate the electronic residual contribution based on the solution in the mean-spherical approximation, which yields reasonable accuracy [32,33,34]. The main difference between the MSA solution for size-asymmetric electrolytes with center–center interactions and the present solution for uniformly charged hard-sphere ions is the Coulomb interaction between two ions [10, 11, 24,25,26]. In the MSA approach, the two-particle, direct, correlation function (DCF) [32,33,34] for uniformly charged hard-sphere ions, \(c_{{\mathrm{chs}},ij}^{(2)}(r, \rho _{i})\), can be expressed as a sum of the hard-sphere and the electronic residual contributions:

$$\begin{aligned} c_{{\mathrm{chs}},ij}^{(2)}(r, \rho _{i})= & {} c_{{\mathrm{hs}},ij}^{(2)}(r, \rho _{i})+{{\beta e^{2}Z_{i}Z_{j}} \over {\epsilon }} A_{ij}(r) \theta (d_{ij}-r)\nonumber \\&+{{e^{2}Z_{i}Z_{j}} \over {r}}\theta (r-d_{ij}), \end{aligned}$$
(14)

where \(d_{ij}=(d_{i}+d_{j})/2\) and \(c_{{\mathrm{hs}},ij}^{(2)}(r, \rho _{i})\) is the two-particle DCF of the Percus–Yevick integral equation for the hard spheres [35, 36]. \(\theta (x) \) is the Heaviside step function: \(\theta (x)=1\) for \(x>0\), and \(\theta (x)=0\) for \(x<0\). For the MCPM, the coefficients \(A_{ij}(r)\) becomes

$$\begin{aligned} {\begin{array}{llll} A_{ij}(r, \rho _{i})&{}=&{} \alpha _{ij}-Z_{i}Z_{j}/r , &{}\quad 0 \le r \le |d_{i}-d_{j}|/2 \\ &{}=&{} \beta _{ij}/r-Z_{i}Z_{j}/r-\gamma _{ij}+r\delta _{ij}+r^{3}\xi _{ij} ,&{}\quad |d_{i}-d_{j}|/2 \le r \le d_{ij} \\ &{}=&{}0, &{}\quad r > d_{ij} \end{array}} \end{aligned}$$
(15)

with

$$\begin{aligned} \alpha _{ij}= & {} -2[-Z_{i}n_{j}+x_{i}s_{j}-a_{i}s_{j}^{2}/3], \end{aligned}$$
(16)
$$\begin{aligned} \beta _{ij}= & {} (d_{i}-d_{j})[(x_{i}+x_{j})(s_{i}-s_{j})/4\nonumber \\&-(a_{i} -a_{j})[(s_{i}+s_{j})^{2}-4n_{i}n_{j}]/16], \end{aligned}$$
(17)
$$\begin{aligned} \gamma _{ij}= & {} (x_{i}-x_{j})(n_{i}-n_{j})+(x_{i}^{2}+x_{j}^{2})\Gamma \nonumber \\&+(a_{i}+a_{j})n_{i}n_{j}-(a_{i}s_{j}^{2}+a_{i}s_{j}^{2})/3, \end{aligned}$$
(18)
$$\begin{aligned} \delta _{ij}= & {} x_{i}s_{i}/a_{i}+x_{j}s_{j}/a_{j}+n_{i}n_{j}-(s_{i}^{2}+s_{j}^{2})/2, \end{aligned}$$
(19)
$$\begin{aligned} \xi _{ij}= & {} [(s_{i}/a_{i})^{2}+(s_{j}/a_{j})^{2}]/6, \end{aligned}$$
(20)

where \(s_{i}=n_{i}+\Gamma x_{i}\) and \(x_{i}=Z_{i}+n_{i}d_{i}\) [34]. The \(\Gamma \) and the \(n_{i}\) functions are obtained numerically to satisfy the algebraic equations

$$\begin{aligned} \Gamma ^{2}= & {} {{\beta \pi e^{2}} \over {\epsilon }} \sum _{i=+,-,M} \rho _{i}(Z_{i}+n_{i}d_{i})^{2}\quad \mathrm{and}\nonumber \\&-x_{i}\Gamma =n_{i}+c\,d_{i}\sum _{i=+,-,M}\rho _{i}d_{i}x_{i} \end{aligned}$$
(21)

with \(c=(\pi /2)[1-\pi /6\sum _{i=+,-,M}\rho _{i}d_{i}^{3}]^{-1}\).

The interaction between two charged hard-sphere ions for overlapping separation \(u_{ij}(r)\) is given by [10, 11, 26]

$$\begin{aligned} u_{ij}(r)={{ e^{2}Z_{i}Z_{j}}\over {\epsilon }}B_{ij}(r)\theta (d_{ij}-r) + {{e^{2}Z_{i}Z_{j}} \over {r}}\theta (r-d_{ij}), \end{aligned}$$
(22)

where the function \(B_{ij}(r)\), which represents the interaction potential between the ions [10, 11, 24,25,26], i.e., the macroion–macroion, macroion–ion, and ion–ion interactions, is simply given by

$$\begin{aligned} B_{\mathrm{MM}}(r)= & {} {{2d_{\mathrm{M}}-r} \over {d_{\mathrm{M}}^{2}}},\quad 0 \le r \le d_{\mathrm{M}} \nonumber \\ B_{-+}= & {} B_{++}=B_{--}={1 \over r},\quad 0 \le r \le d \nonumber \\ B_{-M} = B_{+M}= & {} {2 \over d_{\mathrm{M}}},\quad 0 \le r \le d_{\mathrm{M}}/2 \nonumber \\= & {} {1 \over r},\quad d_{\mathrm{M}}/2 \le r \le (d+d_{\mathrm{M}})/2. \end{aligned}$$
(23)

Then, the electronic residual contribution between the hard-sphere contribution and the Coulomb interaction \(c_{{\mathrm{el}},ij}^{(2)}(r, \rho _{i})\) becomes

$$\begin{aligned} c^{(2)}_{{\mathrm{el}},ij}(r, \rho _{i})= & {} c_{{\mathrm{chs}},ij}^{(2)}(r, \rho _{i}) -c_{{\mathrm{hs}},ij}^{(2)}(r, \rho _{i})+\beta u_{ij}(r) \nonumber \\= & {} -{{\beta e^{2}Z_{i}Z_{j}} \over {\epsilon }} \bigg [ A_{ij}(r)+B_{ij}(r) \bigg ]\theta (d_{ij}-r). \end{aligned}$$
(24)

Notice here that for hard-sphere ions with a charge embedded at the center of the sphere (CPM), Eq. (24) exactly recovers the MSA result for size-asymmetric electrolytes, is derived by Blum and Hiroike [32,33,34].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, S., Shin, G.R. Long-range interactions in model colloidal dispersions with surface charge distributions. J. Korean Phys. Soc. 78, 210–218 (2021). https://doi.org/10.1007/s40042-020-00019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00019-5

Keywords

Navigation