Skip to main content
Log in

Enhanced heat dissipation performance of chemical-doped graphene for flexible devices

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

As the rapid development of electronic technology, the amount of unavoidable heat from electronic components is also increasing. Therefore, the demand for efficient heat dissipation materials with high performance is continuously increasing. Graphene is one of the best candidates in terms of heat dissipation property and intrinsic flexibility. In this work, we show that chemical doping is an effective way to additionally improve the heat dissipation property of large-scale CVD grown monolayer graphene. We found that heat dissipation property of monolayer graphene, chemically doped with HNO3 and PFSA improves by the 9.94% and 4.12% compared with pristine graphene, respectively. Moreover, it shows the stable heat dissipation property after bending test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Mardinly, Micros. Today 15, 6 (2007)

    Article  Google Scholar 

  2. S. Panchal, S. Mathewson, R. Fraser, R. Culham, M. Fowler 1189, 11 (2015)

    Google Scholar 

  3. K.M. Kim, Y.S. Jeong, I.C. Bang, Eng. Sci. Technol. Int. J. 22, 610 (2019)

    Google Scholar 

  4. R. Prasher, Science 328, 185 (2010)

    Article  Google Scholar 

  5. S.-H. Bae, R. Shabani, J.-B. Lee, S.-J. Baeck, H.J. Cho, J.-H. Ahn, IEEE T. Electron. Dev. 61, 4171 (2014)

    Article  ADS  Google Scholar 

  6. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 706 (2009).

  7. H.S. Kim, H.S. Bae, J. Yu, S.Y. Kim, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  8. Z. Gao, Y. Zhang, Y. Fu, M.M. Yuen, J. Liu, Carbon 61, 342 (2013)

    Article  Google Scholar 

  9. K.K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y.H. Lee, J. Kong, Nanotechnology 21, 285205 (2010)

    Article  ADS  Google Scholar 

  10. J.-Y. Syu, Y.-M. Chen, K.-X. Xu, S.-M. He, W.-C. Hung, C.-L. Chang, C.-Y. Su, Rsc Adv. 6, 32746 (2016)

    Article  ADS  Google Scholar 

  11. K.C. Kwon, K.S. Choi, S.Y. Kim, Adv. Funct. Mater. 22, 4724 (2012)

    Article  Google Scholar 

  12. J. Kang, H. Kim, K.S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, B.H. Hong, Nano Lett. 11, 5154 (2011)

    Article  ADS  Google Scholar 

  13. A. Kasry, M.A. Kuroda, G.J. Martyna, G.S. Tulevski, A.A. Bol, ACS Nano 4, 3839 (2010)

    Article  Google Scholar 

  14. T.H. Han, S.J. Kwon, N. Li, H.K. Seo, W. Xu, K.S. Kim, T.W. Lee, Angew. Chem. Int. Ed. 55, 6197 (2016)

    Article  Google Scholar 

  15. S.-J. Kwon, T.-H. Han, T.Y. Ko, N. Li, Y. Kim, D.J. Kim, S.-H. Bae, Y. Yang, B.H. Hong, K.S. Kim, Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  16. Y. Zhang, H. Han, N. Wang, P. Zhang, Y. Fu, M. Murugesan, M. Edwards, K. Jeppson, S. Volz, J. Liu, Adv. Funct. Mater. 25, 4430 (2015)

    Article  Google Scholar 

  17. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Science 324, 1312 (2009).

  18. A. Reina, H. Son, L. Jiao, B. Fan, M.S. Dresselhaus, Z. Liu, J. Kong, J. Phys. Chem. C 112, 17741 (2008)

    Article  Google Scholar 

  19. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Nat. Nanotechnol. 5, 574 (2010)

    Article  ADS  Google Scholar 

  20. N.S. Mueller, S. Heeg, M.P. Alvarez, P. Kusch, S. Wasserroth, N. Clark, F. Schedin, J. Parthenios, K. Papagelis, C. Galiotis, 2D Materials 5, 015016 (2017).

  21. T. Oh, Trans. Electr. Electron. Mater. 14, 246 (2013)

    Article  Google Scholar 

  22. L. Ren, M. Wang, Z. Wei, J. Cheng, K. Liu, L. Pan, L. Lao, S. Lu, J. Yu, New J. Chem. 44, 9337 (2020)

    Article  Google Scholar 

  23. C.-T. Hsieh, Y.-F. Chen, C.-E. Lee, Y.-M. Chiang, K.-Y. Hsieh, H.-S. Wu, Mater. Chem. Phys. 197, 105 (2017)

    Article  Google Scholar 

  24. Y. Chen, X. Hou, R. Kang, Y. Liang, L. Guo, W. Dai, K. Nishimura, C.-T. Lin, N. Jiang, J. Yu, J. Mater. Chem. C 6, 12739 (2018)

    Article  Google Scholar 

  25. O.M. Slobodian, P.M. Lytvyn, A.S. Nikolenko, V.M. Naseka, O.Y. Khyzhun, A.V. Vasin, S.V. Sevostianov, A.N. Nazarov, Nanoscale Res. Lett. 13, 139 (2018)

    Article  ADS  Google Scholar 

  26. R.A. Matula, J. Phys. Chem. Ref. Data 8, 1147 (1979)

    Article  ADS  Google Scholar 

  27. L. D’Arsié, S. Esconjauregui, R.S. Weatherup, X. Wu, W.E. Arter, H. Sugime, C. Cepek, J. Robertson, RSC Adv. 6, 113185 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The research was supported by Samsung Display Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Bin Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, YB., Kireev, D., Kim, M. et al. Enhanced heat dissipation performance of chemical-doped graphene for flexible devices. J. Korean Phys. Soc. 78, 45–50 (2021). https://doi.org/10.1007/s40042-020-00014-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00014-w

Keywords

Navigation