Skip to main content
Log in

The Identification of Critical Limits of Crown Diameter and Jet Height in Terms of Thermophysical Properties of Liquid Pool and Droplet

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

Due to droplet impact on the liquid surface, splashing occurs, which is undesirable for many applications, such as spray quenching on a liquid pool. The splashing intensity depends on themophysical properties of the spray fluid, and it is quantified by factors such as crown diameter, crater diameter, jet height and secondary droplet formation rate. Therefore, the role of themophysical properties of both droplet and pool on the above-mentioned parameters is disclosed and the critical limits are also determined as literature does not reveal the above-stated information. In the current investigation, systematic experiments were conducted on both the miscible and immiscible droplets. Five different viscous liquids (Water, Petrol, Kerosene, Diesel and Rice-Bran oil) were used for the droplet, and four types of fluids (Petrol, Kerosene, Diesel and Rice-Bran oil) were selected for the liquid pool. Different Oh and We numbers are considered as the independent variables, and the crown diameter, crater diameter and jet height are taken as the dependent variables. The crown diameter reaches minimum value at Oh = 0.025 and further increment in Oh number, the crown diameter is identified in the plateau region. Similar trend is observed for jet height case also. However, the reverse trend is noticed in case the variation of the dependent variable is quantified with respect to We number. With the increasing temperature, the crown diameter and jet height augment. The droplet impact mapping indicates that the splashing characteristic intensifies when miscible droplet is replaced by immiscible droplet. The jet height in case of immiscible droplet impact is higher than the miscible due to the attainment of highest impact strength among all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

d :

Diameter of the impacting droplet (mm)

d 1 :

Diameter of the secondary droplet (formed after a jet breakup) (mm)

d h :

Horizontal diameter of the secondary droplet (mm)

d v :

Vertical diameter of the secondary droplet (mm)

g :

Acceleration due to gravity (m/s2)

h :

Maximum jet height (mm)

v :

Droplet velocity (m/s)

μ :

Dynamic viscosity (mPa s)

\(\rho \) :

Density (kg/m3)

\(\sigma \) :

Surface tension (N/m)

\(\tau \) :

Dimensionless time

RBO:

Rice-bran oil

VR:

Viscosity ratio, droplet viscosity to the liquid pool viscosity

References

  1. H. Fujimoto, Y. Oku, T. Ogihara, H. Takuda, Hydrodynamics and boiling phenomena of water droplets impinging on hot solid. Int. J. Multiph. Flow 36(8), 620–642 (2010). https://doi.org/10.1016/j.ijmultiphaseflow.2010.04.004

    Article  Google Scholar 

  2. H. Li, S. Mei, L. Wang, Y. Gao, J. Liu, Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment. Int. J. Heat Fluid Flow 47, 1–8 (2014). https://doi.org/10.1016/j.ijheatfluidflow.2014.02.002

    Article  Google Scholar 

  3. N. Ashgriz, Handbook of Atomization and Sprays, pp. 183–211 (2011). https://doi.org/10.1007/978-1-4419-7264-4.

  4. M. Dudek et al., Microfluidic method for determining drop–drop coalescence and contact times in flow. Colloids Surfaces A Physicochem. Eng. Asp. 586, 124265 (2020). https://doi.org/10.1016/j.colsurfa.2019.124265

    Article  Google Scholar 

  5. R. Narhe, D. Beysens, V.S. Nikolayev, Contact line dynamics in drop coalescence and spreading. Langmuir 20(4), 1213–1221 (2004). https://doi.org/10.1021/la034991g

    Article  Google Scholar 

  6. N.E. Ersoy, M. Eslamian, Phenomenological study and comparison of droplet impact dynamics on a dry surface, thin liquid film, liquid film and shallow pool. Exp. Therm. Fluid Sci. 112, 109977 (2020). https://doi.org/10.1016/j.expthermflusci.2019.109977

    Article  Google Scholar 

  7. S.L. Manzello, J.C. Yang, An experimental investigation of water droplet impingement on a heated wax surface. Int. J. Heat Mass Transf. 47(8–9), 1701–1709 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2003.10.020

    Article  Google Scholar 

  8. A. Coulibaly, J. Bi, D.M. Christopher, Experimental investigation of bubble coalescence heat transfer during nucleate pool boiling. Exp. Therm. Fluid Sci. 104, 67–75 (2019). https://doi.org/10.1016/j.expthermflusci.2019.01.024

    Article  Google Scholar 

  9. D. Banks, C. Ajawara, G. Aguilar, Effects of drop and film viscosity on drop impacts onto thin films, in ICLASS 2012—12th Institute for Liquid Atomization and Spray Systems, vol. 23, no. 6, pp. 555–570 (2012)

  10. C. Josserand, S. Zaleski, Droplet splashing on a thin liquid film. Phys. Fluids 15(6), 1650–1657 (2003). https://doi.org/10.1063/1.1572815

    Article  Google Scholar 

  11. S. Kitabayashi, K. Enoki, T. Okawa, Experiments on the splashing limit during drop impact onto a thin liquid film, in International Conference on Nuclear Engineering Proceedings, ICONE, vol. 9, no. 2, pp. 1–5 (2017). https://doi.org/10.1115/ICONE25-67021.

  12. C. Motzkus, F. Gensdarmes, E. Géhin, Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release. J. Colloid Interface Sci. 362(2), 540–552 (2011). https://doi.org/10.1016/j.jcis.2011.06.031

    Article  Google Scholar 

  13. Z. Che, O.K. Matar, Impact of droplets on immiscible liquid films. Soft Matter 14(9), 1540–1551 (2018). https://doi.org/10.1039/c7sm02089a

    Article  Google Scholar 

  14. G. Liang, I. Mudawar, Review of drop impact on heated walls. Int. J. Heat Mass Transf. 106, 103–126 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.031

    Article  Google Scholar 

  15. Y.M. Qiao, S. Chandra, Experiments on adding a surfactant to water drops boiling on a hot surface. Proc. R. Soc. A Math. Phys. Eng. Sci. 453(1959), 673–689 (1997). https://doi.org/10.1098/rspa.1997.0038

    Article  Google Scholar 

  16. G. Zhang, M.A. Quetzeri-Santiago, C.A. Stone, L. Botto, J.R. Castrejón-Pita, Droplet impact dynamics on textiles. Soft Matter 14(40), 8182–8190 (2018). https://doi.org/10.1039/C8SM01082J

    Article  Google Scholar 

  17. T. Okawa, K. Kubo, K. Kawai, S. Kitabayashi, Experiments on splashing thresholds during single-drop impact onto a quiescent liquid film”. Exp. Therm. Fluid Sci 121, 110279 (2020). https://doi.org/10.1016/j.expthermflusci.2020.110279

    Article  Google Scholar 

  18. K. Dhuper, S.D. Guleria, P. Kumar, Interface dynamics at the impact of a drop onto a deep pool of immiscible liquid. Chem. Eng. Sci. 237, 116541 (2021). https://doi.org/10.1016/j.ces.2021.116541

    Article  Google Scholar 

  19. Z.Q. Yang, Y.S. Tian, S.T. Thoroddsen, Multitude of dimple shapes can produce singular jets during the collapse of immiscible drop-impact craters. J. Fluid Mech. (2020). https://doi.org/10.1017/jfm.2020.694

    Article  Google Scholar 

  20. F. Rodriguez, R. Mesler, The penetration of drop-formed vortex rings into pools of liquid. J. Colloid Interface Sci. 121(1), 121–129 (1988). https://doi.org/10.1016/0021-9797(88)90414-6

    Article  Google Scholar 

  21. Q. Deng, A.V. Anilkumar, T.G. Wang, The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J. Fluid Mech. 578, 119–138 (2007). https://doi.org/10.1017/S0022112007004892

    Article  Google Scholar 

  22. H.C. Pumphrey, P.A. Elmore, The entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539–567 (1990). https://doi.org/10.1017/S0022112090003378

    Article  Google Scholar 

  23. D. Morton, M. Rudman, L. Jong-Leng, An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12(4), 747–763 (2000). https://doi.org/10.1063/1.870332

    Article  Google Scholar 

  24. B. Ray, G. Biswas, A. Sharma, Regimes during liquid drop impact on a liquid pool. J. Fluid Mech. 768, 492–523 (2015). https://doi.org/10.1017/jfm.2015.108

    Article  Google Scholar 

  25. O.G. Engel, Crater depth in fluid impacts. J. Appl. Phys. 37(4), 1798–1808 (1966). https://doi.org/10.1063/1.1708605

    Article  Google Scholar 

  26. L.J. Leng, Splash formation by spherical drops. J. Fluid Mech. 427, 73–105 (2001)

    Article  Google Scholar 

  27. O.G. Engel, Initial pressure, initial flow velocity, and the time dependence of crater depth in fluid impacts. J. Appl. Phys. 38(10), 3935–3940 (1967). https://doi.org/10.1063/1.1709044

    Article  Google Scholar 

  28. I.V. Roisman, K. Horvat, C. Tropea, Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys. Fluids 18(10) (2006). https://doi.org/10.1063/1.2364187.

    Article  MathSciNet  Google Scholar 

  29. I.V. Roisman, T. Gambaryan-Roisman, O. Kyriopoulos, P. Stephan, C. Tropea, Breakup and atomization of a stretching crown. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76(2), 1–9 (2007). https://doi.org/10.1103/PhysRevE.76.026302

    Article  Google Scholar 

  30. I.V. Roisman, On the instability of a free viscous rim. J. Fluid Mech. 661, 206–228 (2010). https://doi.org/10.1017/S0022112010002910

    Article  MathSciNet  Google Scholar 

  31. G. Agbaglah, C. Josserand, S. Zaleski, Longitudinal instability of a liquid rim. Phys. Fluids (2013). https://doi.org/10.1063/1.4789971

    Article  Google Scholar 

  32. G.E. Cossali, A. Coghe, M. Marengo, The impact of a single drop on a wetted solid surface. Exp. Fluids 22(6), 463–472 (1997). https://doi.org/10.1007/s003480050073

    Article  Google Scholar 

  33. C. Motzkus, F. Gensdarmes, E. Géhin, Parameter study of microdroplet formation by impact of millimetre-size droplets onto a liquid film. J. Aerosol Sci. 40(8), 680–692 (2009). https://doi.org/10.1016/j.jaerosci.2009.04.001

    Article  Google Scholar 

  34. T. Nakao, Y. Saito, H. Souma, T. Kawasaki, G. Aoyama, Droplet behavior analyses in the BWR dryer and separator. J. Nucl. Sci. Technol. 35(4), 286–293 (1998). https://doi.org/10.1080/18811248.1998.9733858

    Article  Google Scholar 

  35. H. Shrigondekar, A. Chowdhury, S.V. Prabhu, Performance by various water mist nozzles in extinguishing liquid pool fires. Fire Technol. 57(5), 2553–2581 (2021). https://doi.org/10.1007/s10694-021-01130-0

    Article  Google Scholar 

  36. R.D. Deegan, P. Brunet, J. Eggers, Complexities of splashing. Nonlinearity 21(1), C1–C11 (2008). https://doi.org/10.1088/0951-7715/21/1/C01

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Sanjeeb Mohapatra.

Ethics declarations

Conflict of interests

Authors did not receive any financial support for the current research and declare that there are no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi Kumar, K.P., Parhi, J.D., Sahoo, A. et al. The Identification of Critical Limits of Crown Diameter and Jet Height in Terms of Thermophysical Properties of Liquid Pool and Droplet. J. Inst. Eng. India Ser. E (2024). https://doi.org/10.1007/s40034-023-00283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40034-023-00283-7

Keywords

Navigation