Skip to main content
Log in

A Multi Directional Wicking Instrument to Measure Wicking Characteristics of Fabrics Under Dynamic Movements

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

In most of the standard test methods and research findings, wicking test is carried out when the fabric is in static state. The results from these test method, would not provide sufficient information for designing active sportswear. Since, sportswear will undergo different dynamic movements during each and every action. To overcome this issue, an instrument was developed to test the liquid transport characteristics of fabric during various dynamic movements or deformations. A thermal camera was used to acquire exact measure of liquid spread on any type of fabric without assistance of help of any colored solution. For validating this instrument, three types of knitted fabric widely used in sportswear along with elastane composition were used. The results obtained from this instrument and standard test methods are having high correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Kamalha, Y. Zeng, J.I. Mwasiagi, S. Kyatuheire, The comfort dimension; a review of perception in clothing. J. Sens. Stud. 28(6), 423–444 (2013)

    Article  Google Scholar 

  2. H. Firgo, F. Suchomel, T. Burrow, Tencel® high performance sportswear. Lenzinger Berichte 85, 44–50 (2006)

    Google Scholar 

  3. R. Maughan, S. Shirreffs, Exercise in the heat: challenges and opportunities. J. Sports Sci. 22(10), 917–927 (2004)

    Article  Google Scholar 

  4. A.R. Choudhury, P.K. Majumdar, C. Datta, Factors affecting comfort: human physiology and the role of clothing, in Improving Comfort in Clothing, 3–60 (2011)

  5. N. Oğlakcioğlu, A. Marmarali, Thermal comfort properties of some knitted structures. Fibres. Text. Eastern Eur. 15(5–6), 64–65 (2007)

    Google Scholar 

  6. M. Page, A.V. Moere, Evaluating a wearable display jersey for augmenting team sports awareness, in International Conference on Pervasive Computing. 91–108 (Springer, Berlin, 2007)

  7. M. Senthilkumar, M.B. Sampath, T. Ramachandran, Moisture management in an active sportswear: techniques and evaluation—a review article. J. Inst. Eng. Ser. E 93(2), 61–68 (2012)

    Article  Google Scholar 

  8. G. Bedek, F. Salaün, Z. Martinkovska, E. Devaux, D. Dupont, Evaluation of thermal and moisture management properties on knitted fabrics and comparison with a physiological model in warm conditions. Appl. Ergon. 42(6), 792–800 (2011)

    Article  Google Scholar 

  9. J. Fan, L. Hunter, Physiological comfort of fabrics and garments, in Engineering Apparel Fabrics and Garments, 201–250 (2009)

  10. A. Patnaik, R.S. Rengasamy, V.K. Kothari, A. Ghosh, Wetting and wicking in fibrous materials. Text. Prog. 38(1), 1–105 (2006)

    Article  Google Scholar 

  11. T. Sharabaty, F. Biguenet, D. Dupuis, P. Viallier, Investigation on moisture transport through polyester/cotton fabrics (2008)

  12. B. Das, A. Das, V.K. Kothari, R. Fanguiero, M. Araujo, Moisture transmission through textiles. Part II: evaluation methods and mathematical modeling. Autex Res. J. 7(3), 194–216 (2007)

    Google Scholar 

  13. K. Ghali, B. Jones, J. Tracy, Experimental techniques for measuring parameters describing wetting and wicking in fabrics. Text. Res. J. 64(2), 106–111 (1994)

    Article  Google Scholar 

  14. M. Karahan, A. Kuş, R. Eren, An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics. Int. J. Impact Eng 35(6), 499–510 (2008)

    Article  Google Scholar 

  15. K.L. Hatch, The use of classification systems and production methods in identifying manufactured textile fibers, in Identification of Textile Fibers, 111–130 (2009)

  16. K.P.M. Tang, C.W. Kan, J.T. Fan, Evaluation of water absorption and transport property of fabrics. Text. Prog. 46(1), 1–132 (2014)

    Article  Google Scholar 

  17. D. Raja, C.V. Kouhik, G. Ramakrishnan, V.R. Babu, V. Subramaniam, Horizontal liquid spreading behaviour of hybrid yarn woven fabric using embedded image analysis principle (2012)

  18. D. Raja, G. Ramakrishnan, V.R. Babu, M. Senthilkumar, M.B. Sampath, Comparison of different methods to measure the transverse wicking behaviour of fabrics. J. Ind. Text. 43(3), 366–382 (2014)

    Article  Google Scholar 

  19. A.B. Nyoni, D. Brook, Wicking mechanisms in yarns—the key to fabric wicking performance. J. Text. Inst. 97(2), 119–128 (2006)

    Article  Google Scholar 

  20. D. Raja, G. Ramakrishnan, V.R. Babu, M. Senthilkumar, Effect of cyclic stress on the transverse wicking behavior of cotton/lycra knitted fabrics. J. Text. Inst. 104, 502–510 (2012)

    Article  Google Scholar 

  21. S. Priyalatha, D. Raja, Investigation on wicking behavior of the knitted fabrics under different deformation state. J. Text. Inst. 108(7), 1112–1121 (2017)

    Google Scholar 

  22. S. Preuss, A. Demchuk Jr, M. Struke, American Association of Textile Chemists and Colourists Technical Manual, USA (1994)

  23. O. Troynikov, E. Ashayeri, F.K. Fuss, Tribological evaluation of sportswear with negative fit worn next to skin. Proc. Inst. Mech. Eng. J.: J. Eng. Tribol. 226(7), 588–597 (2012)

    Article  Google Scholar 

  24. J. Voyce, P. Dafniotis, S. Towlson, Textiles in Sport (Wood Head Publications, England 205 (2005)

  25. J. De Sousa, C. Cheatham, M. Wittbrodt, The effects of a moisture-wicking fabric shirt on the physiological and perceptual responses during acute exercise in the heat. Appl. Ergon. 45(6), 1447–1453 (2014)

    Article  Google Scholar 

  26. A.P. Chatterjeeand Singh. Studies on wicking behaviour of polyester fabric. J. Text. (2014). https://doi.org/10.1155/2014/379731

    Article  Google Scholar 

  27. K.H. Umbach, Melliand Testilber 74(2), E78 (1993)

    Google Scholar 

  28. E. Eltahan, J. Comp. (2016). https://doi.org/10.1155/2016/3846936

    Article  Google Scholar 

  29. B. Das, A. Das, V.K. Kothari, R. Fanguiero, M.D. Araujo, Moisture transmission through textiles. Part I: processes involved in moisture transmission and the factors at play. Autex Res. J. 7(2), 100–110 (2007)

    Google Scholar 

Download references

Acknowledgement

The authors thankfully acknowledge the financial support provided by The Institution of Engineers (India) for carrying out Research and Development work in this subject. (Project ID–DR2017001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Raja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyalatha, S., Raja, D. A Multi Directional Wicking Instrument to Measure Wicking Characteristics of Fabrics Under Dynamic Movements. J. Inst. Eng. India Ser. E 99, 209–218 (2018). https://doi.org/10.1007/s40034-018-0128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-018-0128-1

Keywords

Navigation