Studies on Thermal Behaviour of Cotton and Eri/Cotton Blended Fabrics Using Response Surface Methodology

Original Contribution
  • 7 Downloads

Abstract

Eri silk fibre, the lone domesticated non-mulberry variety of silk is reported to possess excellent thermal insulation property and the fabrics made of eri silk yarn is popularly used as warmth giving apparels by the people of north-eastern states of India in particular. On the other side, cotton fibre which is comparatively cheaper than eri silk has wide application in making apparel fabrics. This paper deals with the manufacturing of plain woven fabrics made of eri/cotton blended yarn as weft over cotton warp yarn and to conduct an in-depth study on the effect of blend composition and yarn parameters like count (Ne) and amount of twist on its thermal behaviour. The Box and Behnken model of Design of Experiment for three variables and three levels, a popular statistical tool, has been used to study the influence of chosen factors. The fitted regression equation has been found to be linear in nature confirming the presence of independent effect of yarn fineness, twist and eri content in the blended yarn over thermal insulation value of the fabric with strong degree of association. The effects of yarn count, twist and proportion of eri in blends have been well explained using response surface methodology.

Keywords

Cotton Design of experiment Eri silk Surface and contour plot Thermal insulation value 

References

  1. 1.
    S.B. Stancovic, D. Popovic, G.B. Poparic, Polym. Test. 27, 41–48 (2008)CrossRefGoogle Scholar
  2. 2.
    M. Yoneda, S. Kawabata, J. Text. Mach. Soc. Jpn. 71(35), 15 (1982)Google Scholar
  3. 3.
    M.J. Pac, M.A. Bueno, M. Renner, S. El-Kasmi, Text. Res. J. 71, 806 (2001)CrossRefGoogle Scholar
  4. 4.
    I. Fredrych, Dziworskag, J. Bilska, Fibres Text. East. Eur. October/December, 40–44 (2002)Google Scholar
  5. 5.
    B.V. Holcombe, B.N. Hoschke, Text. Res. J. 53, 368 (1983)CrossRefGoogle Scholar
  6. 6.
    H.N. Yoon, A. Buckley, Text. Res. J. 54, 289 (1984)CrossRefGoogle Scholar
  7. 7.
    G.K. Tyagi, G. Krishna, S. Bhattacharya, P. Kumar, Indian J. Fibre Text. Res. 34, 137–143 (2009)Google Scholar
  8. 8.
    K.L. Hatch, N.L. Markee, H.I. Maibach, Text. Res. J. 60, 405 (1990)CrossRefGoogle Scholar
  9. 9.
    C. Vigneswaran, K. Chandrasekaran, J. Ind. Text. 38(4), 289–307 (2009)CrossRefGoogle Scholar
  10. 10.
    A. Yamada, J. Seric. Sci. Jpn. 66, 266 (1997)Google Scholar
  11. 11.
    T.H. Somashekar, Indian Silk 41(12), 49–52 (2003)Google Scholar
  12. 12.
    G.S. Nadiger, H.L. VijayKumar, Y. Vrashabhendrappa, S.N. Ramesh, A. Kamthane, Studies on Blending of Eri Silk and Polyester Fibres, www.fibre2fashion.com. Accessed 25 Sept 2016
  13. 13.
    T.H. Kariappa, S. Somashekar, Roy and N. Sastry. Man Made Text. India 49(5), 176–185 (2006)Google Scholar
  14. 14.
    M.L. Gulrajani, Chemical Processing of Silk (New Delhi, Indian Institute of Technology, 1993), p. 5Google Scholar
  15. 15.
    G.E.P. Box & D.W. Behnken, Technometrics, 2(4) (Nov), 455 (1960)Google Scholar
  16. 16.
    S.M. Ishtiaque, R.S. Rengasamy, A. Ghosh, Indian J. Fibre Text. Res. 29(1), 39–43 (2004)Google Scholar
  17. 17.
    S.M. Ishtiaque, R.S. Rengasamy, A. Ghosh, Indian J. Fibre Text. Res. 29(2), 190–195 (2004)Google Scholar
  18. 18.
    Thermal Manual, conductivity apparatus (Electronic) (SASMIRA, Mumbai, India, 1997)Google Scholar
  19. 19.
    W.E. Morton, J.W.S. Hearle, Physical properties of textile fibres, 4th edn. (Woodhead Publishing Limited, Cambridge, England, The Textile Institute, 2008), p. 175CrossRefGoogle Scholar
  20. 20.
    P.K. Choudhuri, Ph.D Thesis, Jadavpur University, (2012) Google Scholar

Copyright information

© The Institution of Engineers (India) 2018

Authors and Affiliations

  1. 1.Visva-Bharati (A Central University)BolpurIndia

Personalised recommendations