Production and Recovery of Pyruvic Acid: Recent Advances

  • Dharm Pal
  • Amit Keshav
  • Bidyut Mazumdar
  • Awanish Kumar
  • Hasan Uslu
Review Paper


Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.


Pyruvic acid Carboxylic acid Fermentation Reactive extraction Equilibrium 

List of Symbols


Distribution coefficient


Equilibrium complexation constant for (1:1) acid: amine complex, m3 kmol−1


Concentration of pyruvic acid in organic phase, kmol m−3


Concentration of pyruvic acid in aqueous phase, kmol m−3


Concentration of acid extracted by diluent, kmol m−3


Concentration of acid anion, kmol m−3


Loading ratio


Degree of extraction,

\(\it {R}_{\it{HP}}\)

Rate of extraction

\(\it {D}_{\it{HP}}\)

Diffusivity coefficient

\([\overline{HA} ]\)2

Concentration of acid dimmer in organic phase, m3 kmol−1




Order with respect to acid


Order with respect to amine


  1. 1.
    Y. Li, J. Chen, S. Lun, Biotechnological production of pyruvic acid. Appl. Microb. Biotechnol. 57, 451 (2001)CrossRefGoogle Scholar
  2. 2.
    Y. Li, W. Fu, J. Chen, Recovery of pyruvate from fermentation broth by using ion exchange resin chromatography. Wuxi. Qinggong. Daxue. Xuebao. 20, 335 (2001)Google Scholar
  3. 3.
    J.W. Howard, W.A. Fraser, Preparation of pyruvic acid. Org. Synth. Coll. 1, 475 (1932)Google Scholar
  4. 4.
    R. Miyata, H. Tsutsui, T. Yonehara, Preparing pyruvic acid by fermentation with Torulopsis species. J.P. Patent. 0,155,185 (1989)Google Scholar
  5. 5.
    T. Yonehara, R. Miyata, H. Matsuno, M. Goto, S. Yahanda, Development of fermentative production of pyruvate by metabolic control. Seibutsu Kogaku Kaishi 78, 56 (2000)Google Scholar
  6. 6.
    Y. Izumi, Y. Matsumura, Y. Tani, H. Yamada, Pyruvic acid production from 1,2-propanediol by thiamine. Agric. Biol. Chem. 46, 2673 (1982)Google Scholar
  7. 7.
    U. Behrens, S. Fiedler, Recovery of pyruvate. E.G. Patent. 135,213 (1979)Google Scholar
  8. 8.
    B. Besnainou, D. Giani, C. Sahut, Process for the production of pyruvic acid by fermentation. E.P. Patent. 312,453 (1989)Google Scholar
  9. 9.
    B. Besnainou, D. Giani, C. Sahut, Method for producing pyruvic acid by fermentation. U.S. Patent. 4,918,013 (1990)Google Scholar
  10. 10.
    B.A. Burdick, J.R. Schaeffer, Co-immobilized coupled enzyme systems on nylon mesh capable of gluconic and pyruvic acid production. Biotechnol. Lett. 9, 253 (1987)CrossRefGoogle Scholar
  11. 11.
    B. Cooper, Microbial manufacture of pyruvic acid from d (−)lactic acid. D.E. Patent. 3,733,157 (1989)Google Scholar
  12. 12.
    D.L. Anton, R. DiCosimo, V.G. Witterholt, Process for the preparation of pyruvic acid. W.O. Patent. 9,500,656 (1995)Google Scholar
  13. 13.
    A. Eisenberg, J.E. Seip, J.E. Gavagan, M.S. Payne, D.L. Anton, R. DiCosimo, Pyruvic acid production using methylotrophic yeast transformants as catalyst. J. Mol. Catal. B Enzym. 2, 223 (1997)CrossRefGoogle Scholar
  14. 14.
    V. Goswami, A.K. Srivastava, Propionic acid production in an in situ cell retention bioreactor. Appl. Microbiol. Biotechnol. 56, 676 (2001)CrossRefGoogle Scholar
  15. 15.
    S.T. Hsu, S.T. Yang, Propionic acid fermentation of lactose by Propionibacterium acidipropionici: effects of pH. Biotechnol. Bioeng. 38, 571 (1991)CrossRefGoogle Scholar
  16. 16.
    V.P. Lewis, S.T. Yang, A novel extractive fermentation process for propionic acid production from whey lactose. Appl. Microbiol. Biotechnol. 37, 437 (1992)CrossRefGoogle Scholar
  17. 17.
    D. Jin, S. Liu, L. Xu, H. Ye, Study of a cleaner extraction of pyruvic acid from fermentation broth. Afr. J. Biotechnol. 10, 14083 (2011)CrossRefGoogle Scholar
  18. 18.
    Z. Lu, Immobilized cells technique and its application (The Peoples Press of Ningxia, Ningxia, 1990)Google Scholar
  19. 19.
    R.W. Helsel, Removing carboxylic acids from aqueous wastes. Chem. Eng. Prog. 73, 55 (1977)Google Scholar
  20. 20.
    A. Yokota, H. Shimizu, Y. Terasawa, N. Takaoka, F. Tomita, Pyruvic acid production by a lipoic acid auxotroph of Escherichia coli W1485. Appl. Microbiol. Biotechnol. 41, 638 (1994)CrossRefGoogle Scholar
  21. 21.
    J. Gu, Y. Wang, Q. Jiao, Biocatalyst preparation from Pseudononas putida SM-6 for conversion of di-lactate to pyruvate. Biochem. Eng. J. 22, 89 (2005)CrossRefGoogle Scholar
  22. 22.
    J. Ogawa, C.L. Soong, M. Ito, Enzymatic production of pyruvate from fumarate—an application of microbial cyclic-imide-transforming pathway. J. Mol. Catal. B Enzym. 11, 355 (2001)CrossRefGoogle Scholar
  23. 23.
    A.P. Biwer, P.T. Zuber, B. Zelic, T. Gerharz, K.J. Bellmann, E. Heinzle, Modeling and analysis of a new process for pyruvate production. Ind. Eng. Chem. Res. 44, 3124 (2005)CrossRefGoogle Scholar
  24. 24.
    R. Uchio, K. Kikuchi, Y. Hirose, Process for producing pyruvic acid by fermentation. U.S. Patent. 3, 993,543 (1976)Google Scholar
  25. 25.
    N. Zhao, Y. Liu, H. Que, Y. Xu, Study on extraction technology of sodium pyruvate in fermentation production. Acta. Agr. Jiangxi 22, 161 (2010)Google Scholar
  26. 26.
    H. Matsuno, M. Goto, M. Sasakim, Purification of pyruvic acid by weakly-basic exchange resin. JP Patent. 06,306,011 (1994)Google Scholar
  27. 27.
    H. Shaokai, Q. Wei, D. Youyuan, Sorption of pyruvic acid with weakly basic polymer sorbents. Chin. J. Chem. Eng. 15, 868 (2007)CrossRefGoogle Scholar
  28. 28.
    C.Q. Ma, J.C. Li, J.H. Qiu, M. Wang, P. Xu, Recovery of pyruvic acid from biotransformation solutions. Appl. Microbiol. Biotechnol. 70, 308 (2006)CrossRefGoogle Scholar
  29. 29.
    B. Zelic, D.V. Racki, Recovery of pyruvic acid from fermentation broth: process development and modelling. Desalination 174, 267 (2005)CrossRefGoogle Scholar
  30. 30.
    L.M. Vane, A review of pervaporation for product recovery from biomass fermentation processes. Biofuels Bioprod. Biorefin. 2, 553 (2008)CrossRefGoogle Scholar
  31. 31.
    J.A. Posada, C.A. Cardona, Propionic acid production from raw glycerol using commercial and engineered strains. Ind. Eng. Chem. Res. 51, 2354 (2012)CrossRefGoogle Scholar
  32. 32.
    N. Garcia, J.A. Caballero, Economic and environmental assessment of alternatives to the extraction of acetic acid from water. Ind. Eng. Chem. Res. 50, 10717 (2011)CrossRefGoogle Scholar
  33. 33.
    R. Datta, M. Henry, Recent advances in products, processes and technologies—a review. J. Chem. Technol. Biotechnol. 81, 1119 (2006)CrossRefGoogle Scholar
  34. 34.
    M.C. Duke, A. Lim, S.C. da Luz, L. Nielsen, Lactic acid enrichment with inorganic nanofiltration and molecular sieving membranes by pervaporation. Food Bioprod. Process. 86, 290 (2008)CrossRefGoogle Scholar
  35. 35.
    P. Pal, J. Sikder, S. Roy, L. Giorno, Process intensification in lactic acid production: a review of membrane based processes. Chem. Eng. Process. 48, 1549 (2009)CrossRefGoogle Scholar
  36. 36.
    J. Zhuge, Z. Wang, Technical manual of industrial microbiology experiment (China Light Industry Press, Beijing, 1994)Google Scholar
  37. 37.
    M.C.M. Cockrem, P.D. Johnson, Recovery of lactate and lactic acid from fermentation broth. US Patent. 5 (1991)Google Scholar
  38. 38.
    T. Sirman, D.L. Pyle, A.S. Grandison, Extraction of organic acids using a supported liquid membrane. Biochem. Soc. Trans. 19, 274 (1991)CrossRefGoogle Scholar
  39. 39.
    M.C. Cuellar, S.N. Herreilers, A.J.J. Straathof, J.J. Heijnen, L.A.M. Van der Wielen, Limits of operation for the integration of water removal by membranes and crystallization of l-Phenylalanine. Ind. Eng. Chem. Res. 48, 1566 (2009)CrossRefGoogle Scholar
  40. 40.
    Y.H. Cho, H.D. Lee, H.B. Park, Integrated membrane processes for separation and purification of organic acid from a biomass fermentation process. Ind. Eng. Chem. Res. 51, 10207 (2012)CrossRefGoogle Scholar
  41. 41.
    J.H. Kim, J.G. Na, H.J. Shim, Y.K. Chang, Modeling of ammonium lactate recovery and impurity removal from simulated fermentation broth by nanofiltration. J. Membr. Sci. 396, 110 (2012)CrossRefGoogle Scholar
  42. 42.
    J.M.K. Timmer, J. Kromkamp, T. Robbertsen, Lactic acid separation from fermentation broth by reverse osmosis and nanofiltration. J. Membr. Sci. 92, 185 (1994)CrossRefGoogle Scholar
  43. 43.
    H. Reisinger, R. Marr, Multicomponent-liquid-membrane permeation of organic acids. Chem. Eng. Technol. 15, 363 (1992)CrossRefGoogle Scholar
  44. 44.
    C. Scholler, J.B. Chaudhari, D.L. Pyle, Emulsion liquid membrane extraction of lactic acid from aqueous solutions and fermentation broth. Biotechnol. Bioeng. 42, 50 (1993)CrossRefGoogle Scholar
  45. 45.
    V. Dissing, B. Mattiesson, Cultivation of Lactococcus lactis in a polyelectrolyte-neutral polymer aqueous two-phase system. Biotechnol. Lett. 16, 333 (1994)CrossRefGoogle Scholar
  46. 46.
    J. Planas, P. Radstrom, F. Tjerneld, B. Hahn-Hagerdal, Enhanced production of lactic acid through the use of a novel aqueous two-phase system as an extractive fermentation system. Appl. Microbiol. Biotechnol. 45, 737 (1996)CrossRefGoogle Scholar
  47. 47.
    J. Planas, A. Kozlowski, J.M. Harris, F. Tjerneld, B. Hahn-Hagerdal, Novel polymer-polymer conjugates for recovery of lactic acid by aqueous two-phase extraction. Biotechnol. Bioeng. 66, 211 (1999)CrossRefGoogle Scholar
  48. 48.
    R. Juang, R. Huang, R. Wu, Separation of citric and lactic acids in aqueous solutions by solvent extraction and liquid membrane processes. J. Membr. Sci. 136, 89 (1997)CrossRefGoogle Scholar
  49. 49.
    Y. Tong, M. Hirata, H. Takanashi, T. Hano, F. Kubota, M. Goto, F. Nakashio, M. Matsumoto, Extraction of lactic acid from fermented broth with microporous hollow fiber membranes. J. Membr. Sci. 143, 81 (1998)CrossRefGoogle Scholar
  50. 50.
    H. Huang, S. Yang, D.E. Ramey, A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution. Appl. Biochem. Biotechnol. 114, 671 (2004)CrossRefGoogle Scholar
  51. 51.
    B. Zelic, T. Gerharz, M. Bott, D. Vasić-Rački, C. Wandrey, R. Takors, Fed-batch process for pyruvate production by recombinant Escherichia coli TTC 202 strain. Eng. Life Sci. 3, 299 (2003)CrossRefGoogle Scholar
  52. 52.
    N. Kawabata, S. Yasuda, T. Yamazaki, Process for recovering a carboxylic acid, U.S. Patent. 4,323,702 (1982)Google Scholar
  53. 53.
    A. Srivastava, A. Roychoudhury, V. Sahai, Extractive lactic acid fermentation using ion exchange resin. Biotechnol. Bioeng. 39, 607 (1992)CrossRefGoogle Scholar
  54. 54.
    Y. Dai, J. King, Selectivity between lactic acid and glucose during recovery of lactic acid with basic extractants and polymeric sorbents. Ind. Eng. Chem. Res. 35, 1215 (1996)CrossRefGoogle Scholar
  55. 55.
    C.C. Chen, L.K. Ju, Coupled lactic acid fermentation and adsorption. Appl. Microbiol. Biotechnol. 59, 170 (2002)CrossRefGoogle Scholar
  56. 56.
    S. Kulprathipanja, A.R. Oroshar, Separation of lactic acid from fermentation broth with an anion polymeric absorbent. U.S. Patent. 5, 068,418 (1991)Google Scholar
  57. 57.
    W. Zihao, Z. Kenfeng, Kinetic and mass transfer for lactic acid recovered with anion exchange method in fermentation solution. Biotechnol. Bioeng. 47, 1 (1995)CrossRefGoogle Scholar
  58. 58.
    G. Raya-Tonetti, P. Cordoba, J. Bruno-Barcena, F. Sineriz, N. Perotti, Fluidized bed ion exchange for purification of lactic acid from fermentation. Biotechnol. Tech. 13, 201 (1999)CrossRefGoogle Scholar
  59. 59.
    K. Ye, S. Jin, K. Shimizu, Performance improvement of lactic acid fermentation by multistage extractive fermentation. J. Chem. Technol. Biotechnol. 66, 223 (1996)CrossRefGoogle Scholar
  60. 60.
    K.A. Berglund, P. Elankovan, D.A. Glassner, Carboxylic acid recovery and crystallization process. U.S. Patent. 5,034,105 (1991)Google Scholar
  61. 61.
    R. Datta, D.A. Glassner, M.K. Jain, J.R. Vick Roy, Fermentation and recovery process for succinic acid. U.S. Patent. 5,168,055 (1992)Google Scholar
  62. 62.
    S. Yedur, K.S. Berglung, D.D. Dunuwila, Succinic acid production and purification, US Patent. 6,265,190 (2001)Google Scholar
  63. 63.
    K.L. Wasewar, A.A. Yawalkar, J.A. Moulijn, V.G. Pangarkar, Fermentation of glucose to lactic acid coupled with reactive extraction: a review. Ind. Eng. Chem. Res. 43, 5969 (2004)CrossRefGoogle Scholar
  64. 64.
    J.M. Wardell, C.J. King, Solvent equilibria for extraction of carboxylic acids from water. J. Chem. Eng. Data 23, 144 (1978)CrossRefGoogle Scholar
  65. 65.
    A.M. Baniel, Process for the extraction of organic acids from aqueous solution. E.P. Patent. 0,049,429 (1982)Google Scholar
  66. 66.
    A.S. Kertes, C.J. King, Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng. 28, 269 (1986)CrossRefGoogle Scholar
  67. 67.
    A. Senol, Influence of diluent on amine extraction of pyruvic acid using Alamine system. Chem. Eng. Process. 45, 755 (2006)CrossRefGoogle Scholar
  68. 68.
    M.E. Marti, T. Gurkan, L.K. Doraiswamy, Equilibrium and kinetic studies on reactive extraction of pyruvic acid with trioctylamine in 1-octanol. Ind. Eng. Chem. Res. 50, 13518 (2011)CrossRefGoogle Scholar
  69. 69.
    L.K. Doraiswamy, Organic Synthesis Engineering (Oxford University Press, New York, 2001)Google Scholar
  70. 70.
    S. Kumar, B.V. Babu, Propionic acid production via fermentation route using renewable sources. Chem. Ind. Dig. 9, 76 (2008)Google Scholar
  71. 71.
    D. Cascaval, A.I. Galaction, New separation technique on bioseparation 1. reactive extraction. Chem. Ind. 58, 375 (2004)CrossRefGoogle Scholar
  72. 72.
    E. Kahya, E. Bayraktar, U. Mehmetoglu, Optimization of process parameters for reactive lactic acid extraction. Turk. J. Chem. 25, 223 (2001)Google Scholar
  73. 73.
    J.A. Tamada, A.S. Kertes, C.J. King, Extraction of carboxylic acids with amine extractants. 1. equilibria and law of mass action modeling. Ind. Eng. Chem. Res. 29, 1319 (1990)CrossRefGoogle Scholar
  74. 74.
    W. Qin, Z. Li, Y. Dai, Extraction equilibria of glycolic and glyoxylic acids with trialkylphosphine oxide and trioctylamine as extractant. Ind. Eng. Chem. Res. 42, 6196 (2003)CrossRefGoogle Scholar
  75. 75.
    A. Senol, Optimum extraction equilibria of the systems (water + carboxylic acid + 1-hexanol/Alamine): thermodynamic modeling. J. Chem. Eng. Data 58, 528 (2013)CrossRefGoogle Scholar
  76. 76.
    D. Pal, A. Keshav, Extraction equilibria of pyruvic acid using tri-n-butyphosphate- influence of diluents. J. Chem. Eng. Data 59, 2709 (2014)CrossRefGoogle Scholar
  77. 77.
    L.K. Doraiswamy, M.M. Sharma, Heterogeneous Reaction: Analysis, Examples, and Reactor Design, Fluid–Fluid–Solid Reactions, 1st edn. (Wiley, New York, 1984)Google Scholar
  78. 78.
    C.R. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions. AIChE J. 1, 264 (1955)CrossRefGoogle Scholar
  79. 79.
    K.A. Reddy, L.K. Doraiswamy, Estimating liquid diffusivity. Ind. Eng. Chem. Fundam. 6, 77 (1967)CrossRefGoogle Scholar
  80. 80.
    D. Pal, A. Tripathi, A. Shukla, K.R. Gupta, A. Keshav, Reactive extraction of pyruvic acid using tri-n-octylamine diluted in decanol/kerosene: equilibrium and effect of temperature. J. Chem. Eng. Data 60, 860 (2015)CrossRefGoogle Scholar
  81. 81.
    D. Pal, A. Keshav, Separation of pyruvic acid using reactive extraction: back extraction and effect of pH. Int. J. ChemTech Res. 7, 1889 (2015)Google Scholar
  82. 82.
    D. Pal, A. Keshav, Recovery of pyruvic acid using tri-n-butylamine dissolved in non-toxic diluent (rice bran oil). J. Inst. Eng. India Ser. E 97, 81 (2016)CrossRefGoogle Scholar
  83. 83.
    D. Pal, N. Thakre, A. Kumar, A. Keshav, Reactive extraction of pyruvic acid using mixed extractants. Sep. Sci. Technol. 51, 1141 (2016)CrossRefGoogle Scholar
  84. 84.
    D. Pal, A. Keshav, Kinetics of reactive extraction of pyruvic acid using tributylamine dissolved in n-butyl acetate. Int. J. Chem. React. Eng. 13, 63 (2015)Google Scholar

Copyright information

© The Institution of Engineers (India) 2017

Authors and Affiliations

  • Dharm Pal
    • 1
  • Amit Keshav
    • 1
  • Bidyut Mazumdar
    • 1
  • Awanish Kumar
    • 2
  • Hasan Uslu
    • 3
  1. 1.Department of Chemical EngineeringNational Institute of Technology RaipurRaipurIndia
  2. 2.Department of BiotechnologyNational Institute of Technology RaipurRaipurIndia
  3. 3.Chemical Engineering Department, Engineering and Architecture FacultyBeykent UniversityIstanbulTurkey

Personalised recommendations