Investigation of Structure and Property of Indian Cocos nucifera L. Fibre

  • Gautam Basu
  • Leena Mishra
  • Ashis Kumar Samanta
Original Contribution


Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44–305 mm), and diameter (range 100–795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.


Indian coconut fibre Fibre properties Thermal behavior FTIR SEM 



The authors acknowledge the financial support of the National Agricultural Innovation Project (NAIP), and Indian Council of Agricultural Research.


  1. 1.
    FAO, Jute, Kenaf, Sisal, Abaca, Coir and Allied Fibers Statistics (Food and Agriculture Organization of the United Nations, Rome, 2013)Google Scholar
  2. 2.
    W. Wei, H. Gu, Characterization and utilization of natural coconut fibers composites. Material Des. 30, 2741 (2009)Google Scholar
  3. 3.
    A.K. Bledzki, S. Riehmane, J. Gassan, Properties and modification methods for vegetable fibers for natural fibers composites. J. Appl. Polym. Sci. 59(8), 1329 (1996)CrossRefGoogle Scholar
  4. 4.
    A.I.S. Brígida, V.M.A. Calado, L.R.B. Gonçalves, M.A.Z. Coelho, Effect of chemical treatments on properties of green coconut fiber. Carbohydr. Polym. 79, 832 (2010)CrossRefGoogle Scholar
  5. 5.
    D.N. Mahato, B.K. Mathur, S. Bhattacharyay, Effects of alkali treatment on electrical and spectral properties of coir fiber. J. Mater. Sci. 12, 1350–1353 (1993)Google Scholar
  6. 6.
    ASTM Standard E-1252, Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. (ASTM International, West Conshohocken, PA, 2002)Google Scholar
  7. 7.
    ASTM E1131-08(2014), Standard Test Method for Compositional Analysis by Thermogravimetry (ASTM International, West Conshohocken, PA, 2014)Google Scholar
  8. 8.
    D.S. Varma, M. Varma, I.K. Varma, Coir fibres: part I effect of physical and chemical treatments on properties. Text. Res. J. 54(12), 827 (1984)CrossRefGoogle Scholar
  9. 9.
    J.W.S. Hearle, W.E. Morton. Physical Properties of Textile Fibres, 4th edn. (Woodhead Publishing Limited, Cambridge, 2008), pp 164, 418, 643Google Scholar
  10. 10.
    ASTM (1978) Standard Test Method for Moisture in Textiles. Annual Book of ASTM Standards, ASTM D 2654–76 (American Society for Testing and Materials, Philadelphia)Google Scholar
  11. 11.
    BIS, Testing of Jute Fabrics for Resistance to Attack by Micro-organism, BIS: 1623: 1992 (Second Revision) (ISI Handbook of Textile Testing, Bureau of Indian Standards, New Delhi, 1992)Google Scholar
  12. 12.
    J.E.G. van Dam, M.J.A. Van den Oever, W. Teunissen, E.R.P. Keijsers, A.G. Peralta, Process for production of high density high performance binderless boards from whole coconut husk. Part 1: lignin as intrinsic thermosetting binder resin. Ind. Crops Prod. 19, 207 (2004)Google Scholar
  13. 13.
    T. Tappi, 204 cm-97. Solvent Extractives of Wood and Pulp. TAPPI Test Methods (TAPPI Press, Atlanta, 1997)Google Scholar
  14. 14.
    K. Bilba, M.A. Arsene, A. Ouensanga, Study of banana and coconut fibers, botanical composition, thermal degradation and textural observations. Bioresour. Technol. 98, 58 (2007)CrossRefGoogle Scholar
  15. 15.
    A.K. Samanta, G. Basu, P. Ghosh, Enzyme and silicon treatments on jute fibre. Part I: effect on textile-related properties. Text. Inst. 99(4), 295 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Cao, H. Tan, Effects of cellulase on the modification of cellulose. Carbohydr. Res. 337(14), 1291 (2002)CrossRefGoogle Scholar
  17. 17.
    I.G. Vasi, P.R. Shah, in Spectroscopic Data tables (Mahajan Brothers, Ahmedabad, India, 1981), pp. 4–13Google Scholar
  18. 18.
    D.N. Mahato, R.N. Prasad, B.K. Mathur, Surface morphological, band and lattice structural studies of cellulosic fiber coir under mercerization by ESCA, IR, and XRD techniques. Indian J. Pure Appl. Phys. 47, 643 (2009)Google Scholar
  19. 19.
    W. Yueping, W. Ge, C. Haitao, T. Genlin, L. Zheng, X.Q. Feng, Z. Xiangqi, H. Xiaojun, G. Xushan, Structures of bamboo fiber for textile. Text. Res. J. 80, 334 (2010)CrossRefGoogle Scholar
  20. 20.
    E. Jakab, O. Faix, F. Till, Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J. Anal. Appl. Pyrolysis 40–41, 171 (1997)CrossRefGoogle Scholar
  21. 21.
    J.I. Moran, V.A. Alvarez, V.P. Cyras, A. Vazquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15, 149 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3(10), 1 (2010)Google Scholar
  23. 23.
    A.C. Chakravarty, J.W.S. Hearle, Observations on the tensile properties of ultimate cells of some plant fibres. J. Text. Inst. 58(12), 651–656 (1967)CrossRefGoogle Scholar
  24. 24.
    M.A. Bueno, A.P. Aneja, M. Renner, Influence of the shape of fibre cross section on fabric surface characteristics. J. Mater. Sci. 39, 557–564 (2004)CrossRefGoogle Scholar
  25. 25.
    S. Banik, S.N. Ghosh, Pectinolytic activity of microorganisms in piling of jute. Indian J. Fibre Text. Res. 33, 151–156 (2008)Google Scholar

Copyright information

© The Institution of Engineers (India) 2017

Authors and Affiliations

  • Gautam Basu
    • 1
  • Leena Mishra
    • 1
  • Ashis Kumar Samanta
    • 2
  1. 1.ICAR-National Institute of Research on Jute and Allied Fibre TechnologyKolkataIndia
  2. 2.Department of Jute and Fibre TechnologyUniversity of CalcuttaKolkataIndia

Personalised recommendations