Skip to main content
Log in

Micromagnetic Simulation of Fibers and Coatings on Textiles

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript


Simulations of mechanical or comfort properties of fibers, yarns and textile fabrics have been developed for a long time. In the course of increasing interest in smart textiles, models for conductive fabrics have also been developed. The magnetic properties of fibers or magnetic coatings, however, are almost exclusively being examined experimentally. This article thus describes different possibilities of micromagnetically modeling magnetic fibers or coatings. It gives an overview of calculation times for different dimensions of magnetic materials, indicating the limits due to available computer performance and shows the influence of these dimensions on the simulated magnetic properties for magnetic coatings on fibers and fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. A. Tabiei, I. Ivanov, Computational micro-mechanical model of flexible woven fabric for finite element impact simulation. Int. J. Numer. Method Eng. 53, 1259–1276 (2001)

    Article  Google Scholar 

  2. T.J. Kan, W.R. Yu, Drape simulation of woven fabric by using the finite-element method. J. Text. Inst. 86, 635–648 (1995)

    Article  Google Scholar 

  3. T. Ishikawa, T.W. Chou, Stiffness and strength behaviour of woven fabric composites. J. Mater. Sci. 17, 3211–3220 (1982)

    Article  Google Scholar 

  4. M. de Araújo, R. Fangueiro, H. Hong, Modelling and simulation of the mechanical behavior of weft-knitted fabrics for technical applications—Part 2: 3D model based on the elastica theory. AUTEX Res. J. 3, 166–172 (2004)

    Google Scholar 

  5. N. Takano, Y. Ohnishi, M. Zako, K. Nishiyabu, Microstructure-based deep-drawing simulation of knitted fabric reinforced thermoplastics by homogenization theory. Int. J. Solids Struct. 38, 6333–6356 (2001)

    Article  MATH  Google Scholar 

  6. M. Duhovic, D. Bhattacharyya, Simulating the deformation mechanisms of knitted fabric composites. Compos. A Appl. Sci. Manuf. 37, 1897–1915 (2006)

    Article  Google Scholar 

  7. Y. Li, Z. Luo, An improved mathematical simulation of the coupled diffusion of moisture and heat in wool fabric. Text. Res. J. 69, 760–768 (1999)

    Article  Google Scholar 

  8. J. Fan, Z. Luo, Y. Li, Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation. Int. J. Heat Mass Transf. 43, 2989–3000 (2000)

    Article  MATH  Google Scholar 

  9. Y. Du, J. Li, Dynamic moisture absorption behavior of polyester-cotton fabric and mathematical model. Text. Res. J. 80, 1793–1802 (2010)

    Article  Google Scholar 

  10. X. Zhang, Y. Li, K.W. Yeung, M. Yao, Mathematical simulation of fabric bagging. Text. Res. J. 70, 18–28 (2000)

    Article  Google Scholar 

  11. S. Aumann, S. Trummer, A. Brücken, A. Ehrmann, A. Büsgen, Conceptual design of a sensory shirt for fire-fighters. Text. Res. J. 84, 1661–1665 (2014)

    Article  Google Scholar 

  12. J. Wang, H. Long, S. Soltanian, P. Servati, F. Ko, Electromechanical properties of knitted wearable sensors: part I—theory. Text. Res. J. 84, 3–15 (2014)

    Article  Google Scholar 

  13. J. Wang, H. Long, S. Soltanian, P. Servati, F. Ko, Electro-mechanical properties of knitted wearable sensors: part 2—parametric study and experimental verification. Text. Res. J. 84, 200–213 (2014)

    Article  Google Scholar 

  14. H. Zhang, X. Tao, S. Wang, T. Yu, Electro-mechanical properties of knitted fabric made from conductive multi-filament yarn under unidirectional extension. Text. Res. J. 75, 598–606 (2005)

    Article  Google Scholar 

  15. H. Zhang, X. Tao, S. Wang, Modeling of electro-mechanical properties of conductive knitted fabrics under large uniaxial deformation. Qual. Text. Qual. Life 1–4, 1109–1112 (2004)

    Google Scholar 

  16. Y. Kun, S. Guang-li, Z. Liang, L. Li-wen (2009) Modelling the electrical property of 1 × 1 rib knitted fabrics made from conductive yarns, in Proceedings of the ICIC 2009: Second International Conference on Information and Computing Science, vol. 4, pp. 382–385

  17. A. Amarjargal, L.D. Tijing, C.H. P, I.T. Im, C.S. Kim, Controlled assembly of super paramagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: a novel heat-generating substrate for magnetic hyperthermia application. Eur. Polym. J. 49, 3796–3805 (2013)

    Article  Google Scholar 

  18. M. Rubacha, J. Zieba, Magnetic textile elements. Fibres Text. East. Eur. 14, 49–53 (2006)

    Google Scholar 

  19. P. Ciureanu, G. Rudkowska, P. Rudkowski, J.O. Ström-Olsen, Magnetoresistive sensors with rapidly solidified permalloy fibers. IEEE Trans. Magn. 29, 2251–2257 (1993)

    Article  Google Scholar 

  20. M. Rubacha, J. Zieba, Magnetic cellulose fibres and their application in textronics. Fibres Text. East. Eur. 15, 101–104 (2007)

    Google Scholar 

  21. S. Wiak, A. Firych-Nowacka, K. Smólka, Computer models of 3D magnetic microfibres used in textile actuators. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 29, 1159–1171 (2010)

    Article  MATH  Google Scholar 

  22. J. Zieba, M. Frydrysiak, Modeling of textile magnetic core. Smartex Res. J. 1, 102–110 (2012)

    Google Scholar 

  23. M. Grecka, A. Rizvi, A. Ehrmann, J. Blums (2013) Influence of abrasion and soaking on reflective properties of Cu and Al coated textiles. in Proceedings of Aachen-Dresden International Textile Conference, Aachen/Germany, 28–29.11.2014

  24. M. J. Donahue, D. G. Porter (1999) OOMMF User’s Guide, Version 1.0. Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD

  25. W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, V. Tsiantos, Scalable parallel micromagnetic solvers for magnetic nanostructures. Comput. Mater. Sci. 28, 366–383 (2003)

    Article  Google Scholar 

  26. N.A.M. Barakat, B. Kim, H.Y. Kim, Production of smooth and pure nickel metal nanofibers by the electrospinning technique: nanofibers possess splendid magnetic properties. J. Phys. Chem. C 113, 531–536 (2009)

    Article  Google Scholar 

  27. T. Blachowicz, A. Ehrmann, Fourfold nanosystems for quaternary storage devices. J. Appl. Phys. 110, 073911 (2011)

    Article  Google Scholar 

  28. Ehrmann A (2014) Examination and simulation of new magnetic materials for the possible application in memory cells. Dissertation thesis, Silesian University of Technology, Gliwice/Poland

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Andrea Ehrmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehrmann, A., Blachowicz, T. Micromagnetic Simulation of Fibers and Coatings on Textiles. J. Inst. Eng. India Ser. E 96, 145–150 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: