Micromagnetic Simulation of Fibers and Coatings on Textiles

  • Andrea Ehrmann
  • Tomasz Blachowicz
Original Contribution


Simulations of mechanical or comfort properties of fibers, yarns and textile fabrics have been developed for a long time. In the course of increasing interest in smart textiles, models for conductive fabrics have also been developed. The magnetic properties of fibers or magnetic coatings, however, are almost exclusively being examined experimentally. This article thus describes different possibilities of micromagnetically modeling magnetic fibers or coatings. It gives an overview of calculation times for different dimensions of magnetic materials, indicating the limits due to available computer performance and shows the influence of these dimensions on the simulated magnetic properties for magnetic coatings on fibers and fabrics.


Micromagnetic simulation Magnetic fiber Magnetic coating Magpar OOMMF 


  1. 1.
    A. Tabiei, I. Ivanov, Computational micro-mechanical model of flexible woven fabric for finite element impact simulation. Int. J. Numer. Method Eng. 53, 1259–1276 (2001)CrossRefGoogle Scholar
  2. 2.
    T.J. Kan, W.R. Yu, Drape simulation of woven fabric by using the finite-element method. J. Text. Inst. 86, 635–648 (1995)CrossRefGoogle Scholar
  3. 3.
    T. Ishikawa, T.W. Chou, Stiffness and strength behaviour of woven fabric composites. J. Mater. Sci. 17, 3211–3220 (1982)CrossRefGoogle Scholar
  4. 4.
    M. de Araújo, R. Fangueiro, H. Hong, Modelling and simulation of the mechanical behavior of weft-knitted fabrics for technical applications—Part 2: 3D model based on the elastica theory. AUTEX Res. J. 3, 166–172 (2004)Google Scholar
  5. 5.
    N. Takano, Y. Ohnishi, M. Zako, K. Nishiyabu, Microstructure-based deep-drawing simulation of knitted fabric reinforced thermoplastics by homogenization theory. Int. J. Solids Struct. 38, 6333–6356 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    M. Duhovic, D. Bhattacharyya, Simulating the deformation mechanisms of knitted fabric composites. Compos. A Appl. Sci. Manuf. 37, 1897–1915 (2006)CrossRefGoogle Scholar
  7. 7.
    Y. Li, Z. Luo, An improved mathematical simulation of the coupled diffusion of moisture and heat in wool fabric. Text. Res. J. 69, 760–768 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Fan, Z. Luo, Y. Li, Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation. Int. J. Heat Mass Transf. 43, 2989–3000 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Y. Du, J. Li, Dynamic moisture absorption behavior of polyester-cotton fabric and mathematical model. Text. Res. J. 80, 1793–1802 (2010)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, Y. Li, K.W. Yeung, M. Yao, Mathematical simulation of fabric bagging. Text. Res. J. 70, 18–28 (2000)CrossRefGoogle Scholar
  11. 11.
    S. Aumann, S. Trummer, A. Brücken, A. Ehrmann, A. Büsgen, Conceptual design of a sensory shirt for fire-fighters. Text. Res. J. 84, 1661–1665 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Wang, H. Long, S. Soltanian, P. Servati, F. Ko, Electromechanical properties of knitted wearable sensors: part I—theory. Text. Res. J. 84, 3–15 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Wang, H. Long, S. Soltanian, P. Servati, F. Ko, Electro-mechanical properties of knitted wearable sensors: part 2—parametric study and experimental verification. Text. Res. J. 84, 200–213 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Zhang, X. Tao, S. Wang, T. Yu, Electro-mechanical properties of knitted fabric made from conductive multi-filament yarn under unidirectional extension. Text. Res. J. 75, 598–606 (2005)CrossRefGoogle Scholar
  15. 15.
    H. Zhang, X. Tao, S. Wang, Modeling of electro-mechanical properties of conductive knitted fabrics under large uniaxial deformation. Qual. Text. Qual. Life 1–4, 1109–1112 (2004)Google Scholar
  16. 16.
    Y. Kun, S. Guang-li, Z. Liang, L. Li-wen (2009) Modelling the electrical property of 1 × 1 rib knitted fabrics made from conductive yarns, in Proceedings of the ICIC 2009: Second International Conference on Information and Computing Science, vol. 4, pp. 382–385Google Scholar
  17. 17.
    A. Amarjargal, L.D. Tijing, C.H. P, I.T. Im, C.S. Kim, Controlled assembly of super paramagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: a novel heat-generating substrate for magnetic hyperthermia application. Eur. Polym. J. 49, 3796–3805 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Rubacha, J. Zieba, Magnetic textile elements. Fibres Text. East. Eur. 14, 49–53 (2006)Google Scholar
  19. 19.
    P. Ciureanu, G. Rudkowska, P. Rudkowski, J.O. Ström-Olsen, Magnetoresistive sensors with rapidly solidified permalloy fibers. IEEE Trans. Magn. 29, 2251–2257 (1993)CrossRefGoogle Scholar
  20. 20.
    M. Rubacha, J. Zieba, Magnetic cellulose fibres and their application in textronics. Fibres Text. East. Eur. 15, 101–104 (2007)Google Scholar
  21. 21.
    S. Wiak, A. Firych-Nowacka, K. Smólka, Computer models of 3D magnetic microfibres used in textile actuators. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 29, 1159–1171 (2010)zbMATHCrossRefGoogle Scholar
  22. 22.
    J. Zieba, M. Frydrysiak, Modeling of textile magnetic core. Smartex Res. J. 1, 102–110 (2012)Google Scholar
  23. 23.
    M. Grecka, A. Rizvi, A. Ehrmann, J. Blums (2013) Influence of abrasion and soaking on reflective properties of Cu and Al coated textiles. in Proceedings of Aachen-Dresden International Textile Conference, Aachen/Germany, 28–29.11.2014Google Scholar
  24. 24.
    M. J. Donahue, D. G. Porter (1999) OOMMF User’s Guide, Version 1.0. Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MDGoogle Scholar
  25. 25.
    W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, V. Tsiantos, Scalable parallel micromagnetic solvers for magnetic nanostructures. Comput. Mater. Sci. 28, 366–383 (2003)CrossRefGoogle Scholar
  26. 26.
    N.A.M. Barakat, B. Kim, H.Y. Kim, Production of smooth and pure nickel metal nanofibers by the electrospinning technique: nanofibers possess splendid magnetic properties. J. Phys. Chem. C 113, 531–536 (2009)CrossRefGoogle Scholar
  27. 27.
    T. Blachowicz, A. Ehrmann, Fourfold nanosystems for quaternary storage devices. J. Appl. Phys. 110, 073911 (2011)CrossRefGoogle Scholar
  28. 28.
    Ehrmann A (2014) Examination and simulation of new magnetic materials for the possible application in memory cells. Dissertation thesis, Silesian University of Technology, Gliwice/PolandGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2015

Authors and Affiliations

  1. 1.Faculty of Textile and Clothing TechnologyNiederrhein University of Applied SciencesMönchengladbachGermany
  2. 2.Institute of Physics – Center for Science and EducationSilesian University of TechnologyGliwicePoland

Personalised recommendations