Skip to main content
Log in

Modelling of Dry Sliding Wear Performance of Al-WC Nanocomposites

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

In this study, modelling of specific wear rate and worn surface roughness of Al-WC nanocomposites is attempted. For fabrication of Al-WC nanocomposites, the liquid metallurgy-based ex situ method is exercised. A tailored casting unit with ultrasonic vibration and mechanical stirrer setup is used for fabrication. As particulates are of nanosize, the maximum amount of reinforcement is restricted at 2wt.%. Tribological tests are executed on a pin-on-disc type tribotester. Surface roughness (Ra) of the tested surfaces is measured using a dedicated surface roughness tester. A design of experiment using the central composite design method has been prepared considering input parameters as wt.% of reinforcements (1%, 1.5%, and 2%), the load applied on tribological tests (10, 20, and 30N), and sliding speed (0.1, 0.2, and 0.3 m/s). Specific wear rate and Ra values of worn out surfaces are considered as output responses of this study. A second-order regression model is developed using experimental design method. The response surface method (RSM) is employed for this purpose. ANOVA is performed on the experimental results. Wt.% of reinforcement becomes the most significant parameter for specific wear rate. In the case of the Ra value, load (B) is the most significant parameter with a 58.63% level of significance. After performing a fresh set of experiments and fitting the results into the developed model, it is observed that the difference between actual results and predicted results is within a permissible range. Modelling has been attempted in this work to conclude wear performance of newly developed stir-cast Al-WC nanocomposites with minimum number of experiment. SEM micrographs and EDAX spectrum of wear debris collected from the worn surface are also attempted in the end. Formation of a mixed layer is confirmed which helps to develop better wear performance in composites with more WC as reinforcement. No sign of major ploughing or groove formation is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Roy, S. Ghosh, A. Basumallick, Mater. Sci. Eng. A 415(1–2), 202–206 (2006). https://doi.org/10.1016/j.msea.2005.09.100

    Article  Google Scholar 

  2. S.P. Rawal, JOM 53, 14–17 (2001). https://doi.org/10.1007/s11837-001-0139-z

    Article  Google Scholar 

  3. W. Gaohui, Z. Qiang, C. Guoqin, J. Longtao, X. Ziyang, J. Mater. Sci. Mater. Electron. 14, 9–12 (2003). https://doi.org/10.1023/A:1021567329773

    Article  Google Scholar 

  4. A. Mussatto, I.U. Ahad, R.T. Mousavian, Y. Delaure, D. Brabazon, Eng. Rep. 3(5), e12330 (2021). https://doi.org/10.1002/eng2.12330

    Article  Google Scholar 

  5. D. Gultekin, M. Uysal, S. Aslan, M. Alaf, M.O. Guler, H. Akbulut, Wear 270(1–2), 73–82 (2010). https://doi.org/10.1016/j.wear.2010.09.001

    Article  Google Scholar 

  6. A. Pakdel, A. Witecka, G. Rydzek, S.D.N. Awang, Mater. Des. 119, 225–234 (2017). https://doi.org/10.1016/j.matdes.2017.01.064

    Article  Google Scholar 

  7. M.K. Surappa, Sadhana 28, 319–334 (2003). https://doi.org/10.1007/BF02717141

    Article  Google Scholar 

  8. S.V. Prasad, R. Asthana, Tribol. Lett. 17, 445–453 (2004). https://doi.org/10.1023/B:TRIL.0000044492.91991.f3

    Article  Google Scholar 

  9. N. Hosseini, F. Karimzadeh, M.H. Abbasi, M.H. Enayati, Mater. Des. 31(10), 4777–4785 (2010). https://doi.org/10.1016/j.matdes.2010.05.001

    Article  Google Scholar 

  10. X. Ma, Y.F. Zhao, W.J. Tian, Z. Qian, H.W. Chen, Y.Y. Wu, X.F. Liu, Sci. Rep. 6, 34919 (2016). https://doi.org/10.1038/srep34919

    Article  Google Scholar 

  11. K.S.R. Raju, P.R.M. Raju, S. Rajesh, V.R. Raju, P. Ghosal, J. Compos. Mater. 50(26), 3627–3641 (2016). https://doi.org/10.1177/0021998315623624

    Article  Google Scholar 

  12. M.O. Shabani, A.A. Tofigh, F. Heydari, A. Mazahery, Prot. Met. Phys. Chem. Surf. 52, 244–248 (2016). https://doi.org/10.1134/S2070205116020192

    Article  Google Scholar 

  13. Z. Zhang, J. Liu, T. Wu, Y. Xie, Friction 5, 147–154 (2017). https://doi.org/10.1007/s40544-016-0126-6

    Article  Google Scholar 

  14. N.K. Bhoi, H. Singh, S. Pratap, J. Compos. Mater. 54(6), 813–833 (2020). https://doi.org/10.1177/0021998319865307

    Article  Google Scholar 

  15. I.J. Shon, Ceram. Int. 42(15), 17884–17891 (2016). https://doi.org/10.1016/j.ceramint.2016.07.050

    Article  Google Scholar 

  16. A. Pal, S. Poria, G. Sutradhar, P. Sahoo, Mater. Res. Express. 5(3), 036521 (2018). https://doi.org/10.1088/2053-1591/aab577

    Article  Google Scholar 

  17. A. Lekatou, A.E. Karantzalis, A. Evangelou, V. Gousia, G. Kaptay, Z. Gácsi, P. Baumli, A. Simon, Mater. Des. 65, 1121–1135 (2015). https://doi.org/10.1016/j.matdes.2014.08.040

    Article  Google Scholar 

  18. Y. Yang, J. Lan, X. Li, Mater. Sci. Eng. A 380(1–2), 378–383 (2004). https://doi.org/10.1016/j.msea.2004.03.073

    Article  Google Scholar 

  19. H. Puga, J. Barbosa, S. Costa, S. Ribeiro, A.M.P. Pinto, M. Prokic, Mater. Sci. Eng. A 560, 589–595 (2013). https://doi.org/10.1016/j.msea.2012.09.106

    Article  Google Scholar 

  20. Y. Yang, X. Li, J. Manuf. Sci. Eng. 129(2), 252–255 (2007). https://doi.org/10.1115/1.2194064

    Article  Google Scholar 

  21. N. Selvakumar, B. Gnanasundarajayaraja, P. Rajeshkumar, Exp. Tech. 40, 129–135 (2016). https://doi.org/10.1007/s40799-016-0015-y

    Article  Google Scholar 

  22. K. Ravikumar, K. Kiran, V.S. Sreebalaji, Measurement 102, 142–149 (2017). https://doi.org/10.1016/j.measurement.2017.01.045

    Article  Google Scholar 

  23. S. Arivukkarasan, V. Dhanalakshmi, B. Stalin, M. Ravichandran, Part. Sci. Technol. 36(8), 967–973 (2018). https://doi.org/10.1080/02726351.2017.1331285

    Article  Google Scholar 

  24. S. Veličković, B. Stojanović, M. Babić, I. Bobić, J. Compos. Mater. 51(17), 2505–2515 (2017). https://doi.org/10.1177/0021998316672294

    Article  Google Scholar 

  25. N. Bharat, P.S.C. Bose, Silicon 12, 1–17 (2023). https://doi.org/10.1007/s12633-023-02423-5

    Article  Google Scholar 

  26. A.A. Adediran, A.A. Akinwande, O.A. Balogun, B.J. Olorunfemi, M.S. Kumar, Sci. Rep. 11, 19860 (2021). https://doi.org/10.1038/s41598-021-99168-1

    Article  Google Scholar 

  27. A.I. Khuri, J.A. Cornell, Response surfaces: designs and analyses (CRC Press Routledge, Taylor & Francis Group, 2018)

    Book  Google Scholar 

  28. S. Sardar, S.K. Karmakar, D. Das, Measurement 127, 42–62 (2018). https://doi.org/10.1016/j.measurement.2018.05.090

    Article  Google Scholar 

  29. Y. Sahin, K. Özdin, Mater. Des. 29(3), 728–733 (2008). https://doi.org/10.1016/j.matdes.2007.02.013

    Article  Google Scholar 

  30. S. Sardar, S.K. Pradhan, S.K. Karmakar, D. Das, J. Tribol. 141, 7 (2019). https://doi.org/10.1115/1.4043642

    Article  Google Scholar 

  31. E.A. Diler, R. Ipek, Compos. B. Eng. 50, 371–380 (2013). https://doi.org/10.1016/j.compositesb.2013.02.001

    Article  Google Scholar 

  32. A. Kumar, M.M. Mahapatra, P.K. Jha, Wear 306(1–2), 170–178 (2013). https://doi.org/10.1016/j.wear.2013.08.013

    Article  Google Scholar 

Download references

Funding

Nil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Sahoo.

Ethics declarations

Conflict of interests

Nil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R.K., Poria, S. & Sahoo, P. Modelling of Dry Sliding Wear Performance of Al-WC Nanocomposites. J. Inst. Eng. India Ser. D 105, 461–475 (2024). https://doi.org/10.1007/s40033-023-00494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-023-00494-7

Keywords

Navigation