Skip to main content

Advertisement

Log in

Homogeneous and Heterogeneous Modeling of Patient-Specific Hip Implant Under Static and Dynamic Loading Condition Using Finite Element Analysis

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Stress and strain shielding are the most common phenomenon shown by the metallic implant which reduces the implant life due to modulus mismatch. It is necessary to have a sufficient knowledge about the induced stress and strain distribution in order to find the suitable implant design with appropriate material combinations. In the present work, a three-dimensional implant model has been developed using real-life patient-specific computed tomographic (CT) data. Two different material models, viz. homogeneous (Ti–6Al–4V) and heterogeneous (Ti–6Al–4V and Ti-35Nb–5Ta-7Zr–0.4O), have been taken into account to demonstrate their mechanical properties like stress, strain and deformation. In addition, the boundary condition has been applied at distal end using ASTM F2996-1 and two different types of loading conditions have been applied (1) static loading using ISO 7206–4:2010(E) standard and (2) dynamic loading using patient-specific constraints, i.e., forces and torsional moment. For dynamic analysis, a patient-specific walking and going downstairs gait motions have been considered to obtain the essential mechanical characteristics. The final outcome reveals that heterogeneous model demonstrates lower von mises stress and approximate similar strain value compared to homogeneous model. It has been observed that the heterogeneous material model demonstrates less von mises stress at peak curve, i.e., 4.7% and 18.81% lesser for walking and going downstairs, respectively. Finally, the validation of the present study with the results of Joshi et al. (ASME Open J Eng 1:011001, 2022) reveals that heterogeneous material model could be preferred over homogeneous material for hip prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(\sigma\) :

Von mises stress

\(A\) :

Unit area

\(L\) :

Length of the specimen

\(\varepsilon\) :

Strain

\(\Delta L\) :

Change in length

\(\left( {\sigma_{{{\text{vms}}}}^{{\text{THA}}} } \right)\) :

Avg. VVMS after implantation

\(P\) :

Applied force

\(\delta\) :

Deformation

\(E\) :

Modulus of elasticity

\(L_{0}\) :

Original length

\(\left( {\sigma_{{{\text{vms}}}}^{{\text{pre - THA}}} } \right)\) :

VVMS before implantation

THA:

Total hip arthroplasty

FE:

Finite element

CAD:

Computer-aided design

VVMS:

Volume von mises stress

SSE:

Stress shielding effect

THR:

Total hip replacement

FEM:

Finite element method

CT:

Computed tomography

FGM:

Functionally graded material

References

  1. K.N. Chethan, S.N. Bhat, M. Zuber, S.B. Shenoy, Patient-specific static structural analysis of femur bone of different lengths. Open Biomed. Eng. J. (2018). https://doi.org/10.2174/1874120701812010108

    Article  Google Scholar 

  2. D.J. Loy, A.S. Voloshin, Biomechanics of stair walking and jumping. J. Sports Sci. 9, 137–149 (1991). https://doi.org/10.1080/02640419108729875

    Article  Google Scholar 

  3. G. Bergmann, G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, G.N. Duda, Hip contact forces and gait patterns from routine activities. J Biomech. 34, 859–871 (2001). https://doi.org/10.1016/s0021-9290(01)00040-9

    Article  Google Scholar 

  4. Hip Problems, (2021). https://www.hopkinsmedicine.org/health/conditions-and-diseases/hip-problems (accessed October 7, 2022).

  5. T. Joshi, G. Gupta, Effect of dynamic loading on hip implant using finite element method. Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2020.11.378

    Article  Google Scholar 

  6. B. Liu, H. Wang, N. Zhang, M. Zhang, C.-K. Cheng, Femoral stems with porous lattice structures: a review. Front. Bioeng. Biotechnol. (2021). https://doi.org/10.3389/fbioe.2021.772539

    Article  Google Scholar 

  7. D. Bennett, T. Goswami, Finite element analysis of hip stem designs. Mater. Des. 29, 45–60 (2008). https://doi.org/10.1016/j.matdes.2006.12.014

    Article  Google Scholar 

  8. O.K. Ihesiulor, K. Shankar, P. Smith, A. Fien, Determination of the pullout/holding strength at the taper-trunnion junction of hip implants. Int. J. Med. Health Sci. 9, 727–730 (2015)

    Google Scholar 

  9. M.-R. Cho, W.K. Choi, J.J. Kim, Current concepts of using large femoral heads in total hip arthroplasty. Hip Pelvis. 28, 134–141 (2016). https://doi.org/10.5371/hp.2016.28.3.134

    Article  Google Scholar 

  10. C. Kn, M. Zuber, N.S. Bhat, B.S. Shenoy, Optimized trapezoidal-shaped hip implant for total hip arthroplasty using finite element analysis. Cogent Eng. 7, 1719575 (2020). https://doi.org/10.1080/23311916.2020.1719575

    Article  Google Scholar 

  11. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog. Mater Sci. 54, 397–425 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  Google Scholar 

  12. G.M. Izzo, Support for total hip replacement surgery: structures modeling gait data analysis and report system. Eur. J. Transl. Myology. 22, 69–121 (2012). https://doi.org/10.4081/ejtm.2012.1795

    Article  Google Scholar 

  13. A.Z. Senalp, O. Kayabasi, H. Kurtaran, Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Mater. Des. 28, 1577–1583 (2007). https://doi.org/10.1016/j.matdes.2006.02.015

    Article  Google Scholar 

  14. K.N. Chethan, M. Zuber, S. Shenoy, C.R. Kini, Static structural analysis of different stem designs used in total hip arthroplasty using finite element method. Heliyon. 5, e01767 (2019). https://doi.org/10.1016/j.heliyon.2019.e01767

    Article  Google Scholar 

  15. Y.H. Kim, J.S. Kim, S.H. Cho, Strain distribution in the proximal human femur an in vitro comparison in the intact femur and after insertion of reference and experimental femoral stems. J Bone Joint Surg Br 83, 295–301 (2001). https://doi.org/10.1302/0301-620x.83b2.10108

    Article  Google Scholar 

  16. R. Sharma, V.K. Mittal, V. Gupta, Homogeneous modelling and analysis of hip prosthesis using FEA. J Phys: Conf Ser 1240, 012118 (2019). https://doi.org/10.1088/1742-6596/1240/1/012118

    Article  Google Scholar 

  17. T. Joshi, R. Sharma, V.K. Mittal, V. Gupta, Comparative investigation and analysis of hip prosthesis for different bio-compatible alloys. Mater. Today: Proc. 43, 105–111 (2021). https://doi.org/10.1016/j.matpr.2020.11.222

    Article  Google Scholar 

  18. S.K. Singh, P. Tandon, Heterogeneous modeling based prosthesis design with porosity and material variation. J. Mech. Behav. Biomed. Mater. 87, 124–131 (2018). https://doi.org/10.1016/j.jmbbm.2018.07.029

    Article  Google Scholar 

  19. E. Kaivosoja, V.-M. Tiainen, Y. Takakubo, B. Rajchel, J. Sobiecki, Y.T. Konttinen, M. Takagi, Materials used for hip and knee implants, in: Wear of Orthopaedic Implants and Artificial Joints, Elsevier, 2013: pp. 178–218.

  20. M. Noda, Y. Saegusa, M. Takahashi, D. Tezuka, K. Adachi, K. Naoi, Biomechanical study using the finite element method of internal fixation in Pauwels type III vertical femoral neck fractures. Arch. Trauma Res. 4, e23167 (2015). https://doi.org/10.5812/atr.23167

    Article  Google Scholar 

  21. T. Joshi, R. Sharma, V.K. Mittal, V. Gupta, Biomechanical analysis of multi-material hip implant assembly, SPAST Abstracts. 1 (2021). https://spast.org/techrep/article/view/1156 (accessed February 28, 2022).

  22. G. Bergmann, F. Graichen, A. Rohlmann, A. Bender, B. Heinlein, G.N. Duda, M.O. Heller, M.M. Morlock, Realistic loads for testing hip implants. Bio-Med. Mater. Eng. 20, 65–75 (2010). https://doi.org/10.3233/BME-2010-0616

    Article  Google Scholar 

  23. T. Joshi, R. Sharma, V.K. Mittal, V. Gupta, G. Krishan, Dynamic analysis of hip prosthesis using different biocompatible alloys. ASME Open J. Eng. 1, 011001 (2022). https://doi.org/10.1115/1.4053417

    Article  Google Scholar 

  24. U. Hossain, S. Ghouse, K. Nai, J.R.T. Jeffers, Mechanical and morphological properties of additively manufactured SS316L and Ti6Al4V micro-struts as a function of build angle. Addit. Manufact. 46, 102050 (2021). https://doi.org/10.1016/j.addma.2021.102050

    Article  Google Scholar 

  25. V. Gupta, K.S. Kasana, P. Tandon, Reference based geometric modeling for heterogeneous objects. Comput.-Aided Des Appl. 9, 155–165 (2012). https://doi.org/10.3722/cadaps.2012.155-165

    Article  Google Scholar 

  26. V. Gupta, V.K. Bajpai, P. Tandon, Slice generation and data retrieval algorithm for rapid manufacturing of heterogeneous objects. Comput.-Aided Des. Appl. 11, 255–262 (2014). https://doi.org/10.1080/16864360.2014.863483

    Article  Google Scholar 

  27. V. Gupta, P. Tandon, Heterogeneous object modeling with material convolution surfaces. Comput. Aided Des. 62, 236–247 (2015). https://doi.org/10.1016/j.cad.2014.12.005

    Article  Google Scholar 

  28. B. Li, J. Fu, Y.J. Zhang, A. Pawar, A trivariate T-spline based framework for modeling heterogeneous solids. Comput. Aided Geom. Des. 81, 101882 (2020). https://doi.org/10.1016/j.cagd.2020.101882

    Article  MathSciNet  Google Scholar 

  29. A.O. Ghaziani, R. Soheilifard, S. Kowsar, The effect of functionally graded materials on bone remodeling around osseointegrated trans-femoral prostheses. J. Mech. Behav. Biomed Mater. 118, 104426 (2021). https://doi.org/10.1016/j.jmbbm.2021.104426

    Article  Google Scholar 

  30. T. Joshi, R. Sharma, O. Parkash, A. Gupta, Design and Analysis of Metal-To-Metal Contact Bolted Flange Joint Using FEA Tool, in Advances in Engineering Design. ed. by P. Joshi, S.S. Gupta, A.K. Shukla, S.S. Gautam (Springer, Singapore, 2021), pp.315–325. https://doi.org/10.1007/978-981-33-4684-0_32

    Chapter  Google Scholar 

  31. S. Kant, T. Joshi, R. Sharma, Modeling and Analysis of Composite Bullet-Resistant Jacket, in Advances in Engineering Design. ed. by P. Joshi, S.S. Gupta, A.K. Shukla, S.S. Gautam (Springer, Singapore, 2021), pp.375–386. https://doi.org/10.1007/978-981-33-4684-0_38

    Chapter  Google Scholar 

  32. T. Joshi, O. Parkash, G. Krishan, Numerical investigation of slurry pressure drop at different pipe roughness in a straight pipe using CFD. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-06583-1

    Article  Google Scholar 

  33. T. Joshi, O. Parkash, G. Krishan, CFD modeling for slurry flow through a horizontal pipe bend at different Prandtl number. Int. J. Hydrogen Energy 47, 23731–23750 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.201

    Article  Google Scholar 

  34. T. Joshi, O. Parkash, G. Krishan, Slurry flow characteristics through a horizontal pipeline at different Prandtl number. Powder Technol (2022). https://doi.org/10.1016/j.powtec.2022.118008

    Article  Google Scholar 

  35. G. Krishan, K.C. Aw, R.N. Sharma, Synthetic jet impingement heat transfer enhancement—A review. Appl. Therm. Eng. 149, 1305–1323 (2019). https://doi.org/10.1016/j.applthermaleng.2018.12.134

    Article  Google Scholar 

  36. G. Krishan, K.C. Aw, R.N. Sharma, Comparison of the flow-field characteristics of a slot synthetic jet with and without sidewalls. Int. J. Heat Fluid Flow. 82, 108535 (2020). https://doi.org/10.1016/j.ijheatfluidflow.2020.108535

    Article  Google Scholar 

  37. G. Chen, G. Krishan, Y. Yang, L. Tang, B. Mace, Numerical investigation of synthetic jets driven by thermoacoustic standing waves. Int. J. Heat Mass Transf. 146, 118859 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118859

    Article  Google Scholar 

  38. K. Colic, A. Sedmak, A. Grbovic, U. Tatic, S. Sedmak, B. Djordjevic, Finite element modeling of hip implant static loading. Procedia Eng. 149, 257–262 (2016). https://doi.org/10.1016/j.proeng.2016.06.664

    Article  Google Scholar 

  39. T. Joshi, R. Sharma, V.K. Mittal, V. Gupta, G. Krishan, Dynamic fatigue behavior of hip joint under patient specific loadings. Int. J. Automot. Mech. Eng. 19, 10014–10027 (2022). https://doi.org/10.15282/ijame.19.3.2022.13.0773

    Article  Google Scholar 

  40. E. Yılmaz, A. Gökçe, F. Findik, H.O. Gulsoy, O. İyibilgin, Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials. J. Mech. Behav. Biomed. Mater. 87, 59–67 (2018). https://doi.org/10.1016/j.jmbbm.2018.07.018

    Article  Google Scholar 

  41. E. Yılmaz, A. Gökçe, F. Findik, Ho. Gulsoy, Metallurgical properties and biomimetic HA deposition performance of Ti-Nb PIM alloys. J. Alloys Compd. 746, 301–313 (2018). https://doi.org/10.1016/j.jallcom.2018.02.274

    Article  Google Scholar 

  42. E. Yılmaz, B. Çakıroğlu, A. Gökçe, F. Findik, H.O. Gulsoy, N. Gulsoy, Ö. Mutlu, M. Özacar, Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition. Mater. Sci. Eng., C 101, 292–305 (2019). https://doi.org/10.1016/j.msec.2019.03.078

    Article  Google Scholar 

  43. Y.W. Lim, S.Y. Kwon, D.H. Sun, Y.S. Kim, The otto aufranc award: enhanced biocompatibility of stainless steel implants by titanium coating and microarc oxidation. Clin Orthop Relat Res. 469, 330–338 (2011). https://doi.org/10.1007/s11999-010-1613-0

    Article  Google Scholar 

  44. H.S. Hedia, S.M. Aldousari, A.K. Abdellatif, N. Fouda, A new design of cemented stem using functionally graded materials (FGM). Bio-Med. Mater. Eng. 24, 1575–1588 (2014). https://doi.org/10.3233/BME-140962

    Article  Google Scholar 

  45. T.A. Enab, A comparative study of the performance of metallic and FGM tibia tray components in total knee replacement joints. Comput. Mater. Sci. 53, 94–100 (2012). https://doi.org/10.1016/j.commatsci.2011.09.032

    Article  Google Scholar 

  46. D. Lin, Q. Li, W. Li, S. Zhou, M.V. Swain, Design optimization of functionally graded dental implant for bone remodeling. Compos. B Eng. 40, 668–675 (2009). https://doi.org/10.1016/j.compositesb.2009.04.015

    Article  Google Scholar 

  47. N. Kladovasilakis, K. Tsongas, D. Tzetzis, Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures. Biomimetics. 5, 44 (2020). https://doi.org/10.3390/biomimetics5030044

    Article  Google Scholar 

  48. M. Jafari Chashmi, A. Fathi, M. Shirzad, R.-A. Jafari-Talookolaei, M. Bodaghi, S.M. Rabiee, Design and analysis of porous functionally graded femoral prostheses with improved stress shielding. Designs. 4, 12 (2020). https://doi.org/10.3390/designs4020012

    Article  Google Scholar 

  49. V.K. Ravikant, D.V.G. Mittal, Dry and wet lubrication analysis for multi-material hip assembly. Int. J. Automot. Mech. Eng. 19, 9606–9622 (2022). https://doi.org/10.15282/ijame.19.1.2022.22.0741

    Article  Google Scholar 

  50. S. Wang, X. Zhou, L. Liu, Z. Shi, Y. Hao, On the design and properties of porous femoral stems with adjustable stiffness gradient. Med. Eng. Phys. 81, 30–38 (2020). https://doi.org/10.1016/j.medengphy.2020.05.003

    Article  Google Scholar 

  51. J. Jamari, M.I. Ammarullah, G. Santoso, S. Sugiharto, T. Supriyono, E. van der Heide, In silico contact pressure of metal-on-metal total hip implant with different materials subjected to gait loading. Metals. 12, 1241 (2022). https://doi.org/10.3390/met12081241

    Article  Google Scholar 

  52. H. Jiang, Static and dynamic mechanics analysis on artificial hip joints with different interface designs by the finite element method. J. Bionic Eng. 4, 123–131 (2007). https://doi.org/10.1016/S1672-6529(07)60024-9

    Article  Google Scholar 

  53. G. Yamako, E. Chosa, X. Zhao, K. Totoribe, S. Watanabe, T. Sakamoto, N. Nakane, Load-transfer analysis after insertion of cementless anatomical femoral stem using pre- and post-operative CT images based patient-specific finite element analysis. Med. Eng. Phys. 36, 694–700 (2014). https://doi.org/10.1016/j.medengphy.2014.02.018

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to show their gratitude to Bajaj Fracture Clinic and Nursing Home for sharing their valuable suggestions during course of this research.

Funding

The authors declare that this research work is not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravikant.

Ethics declarations

Conflict of interest

The author declares that there is not known personal and financial interest which can affect the publishing of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikant, Mittal, V.K. & Gupta, V. Homogeneous and Heterogeneous Modeling of Patient-Specific Hip Implant Under Static and Dynamic Loading Condition Using Finite Element Analysis. J. Inst. Eng. India Ser. D 105, 1–20 (2024). https://doi.org/10.1007/s40033-023-00447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-023-00447-0

Keywords

Navigation