Skip to main content
Log in

Experimental Studies of Failure in L-Shaped Carbon Fiber-Reinforced Polymer Composite Under Pullout and Four-Point Bending

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Composite materials are used in place of conventional metals to create complex, homogeneous structures that are lightweight and extremely durable. It has been observed that the curved section of a complex structure is the weakest, with the greatest stress concentration occurring in the L-shaped curved section with uniform thickness. In this work, L-shaped woven carbon fiber-reinforced plastic (CFRP) laminates were fabricated by hand layup method with a stacking sequence of [90°/0°/45°/−45°/90°/0°/45°/−45°]S. The fabricated laminates were experimentally tested under pullout and 4-point bending loads according to ASTM D6415 and modified ASTMD6415, respectively. The average load capacity of the specimen for the pullout test was 496.4 N. For the 4-point bending test, the average load capacity was 857.4 N. A Nikon DSLR camera was used to record the onset and progression of damage. In these tests, matrix cracking occurs mainly before and after the 90° lamina, while delamination occurs mainly at the 0°/45°, 90°/0°, and 45°/0° interfaces. This is due to the fact that in the 4-point bending test, the maximum compressive stresses occur in the contact area and the stresses are transmitted through the matrix to the fiber. An optical microscope was used to examine the microstructures of the specimens before and after the experimental tests. It was found that the failure was caused by cracks in the matrix leading to delamination failure. Other failures such as fiber breakage, cracks in the matrix, fiber splitting, and delamination were also observed with the optical microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Bati, T. Briccoli, Rotunno, Histor. Constr. 1039: 46, (2001). http://www.hms.civil.uminho.pt/events/historica2001/page%201039-1046%20_114_pdf

  2. D. Ozkan, M.S. Gok, A.C. Karaoglanli, Engineering Design Applications III (Springer, Cham, 2020), pp.235–253

    Book  Google Scholar 

  3. M. Balasubramanian, Composite materials and processing (CRC Press, Boca Raton, 2014), pp.335–343

    Google Scholar 

  4. D.P. Archana, H.N. Jagannatha Reddy, J. Prabhakara, Inst. Eng. India Ser. C 103, 39–52 (2022). https://doi.org/10.1007/s40032-021-00743-2

    Article  Google Scholar 

  5. A. Janakiraman, S. Pemmasani, J. Sheth, Inst. Eng. India Ser. C 101, 291–302 (2020). https://doi.org/10.1007/s40032-020-00563-w

    Article  Google Scholar 

  6. M.M. Bordoloi, S. Kirtania, J. Banerjee, Inst. Eng. India Ser. D (2022). https://doi.org/10.1007/s40033-022-00380-8

    Article  Google Scholar 

  7. T.W. Clyne, D. Hull, An introduction to composite materials (Cambridge University Press, England, 2019)

    Book  Google Scholar 

  8. Tong, Ruoshi, PhD diss., Concordia Univ., (2012). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.634.3187&rep=rep1&type=pdf

  9. I. Uyar, B. Gozluklu, D. Coker, In J. Phys. Conf. Ser. (2014). https://doi.org/10.1088/17426596/524/1/012042

    Article  Google Scholar 

  10. R.M. Jones, CRC Press (2018). https://doi.org/10.1201/9781498711067

    Article  Google Scholar 

  11. N. Zahlan, J.M. O’neill, Composites 20(1), 77–81 (1989). https://doi.org/10.1016/0010-4361(89)90685-x

    Article  Google Scholar 

  12. H.W. Wiersma, L.J.B. Peeters, R. Akkerman, Compos. Part A: Appl. Sci. Manuf. 29(11), 1333–1342 (1998). https://doi.org/10.1016/S1359-835X(98)00062-1

    Article  Google Scholar 

  13. S.B. Tibhe, V.R. Rathi, Procedia Technol. 24, 140–147 (2016). https://doi.org/10.1016/j.protcy.2016.05.020

    Article  Google Scholar 

  14. K.T. Le, K. Lee, Compos. Part B: Eng. (2006). https://doi.org/10.1016/j.compositesb.2009.06.005

    Article  Google Scholar 

  15. Z.E. Benzeguir, G.-S. Abidine, O. Chaallal, J. Compos. Constr. 24(4), 04020031 (2020). https://doi.org/10.1061/(ASCE)CC.1943-5614.0001045

    Article  Google Scholar 

  16. D. Çöker, J. Phys.: Conf. Ser. (2015). https://doi.org/10.1088/1742-6596/524/1/012042

    Article  Google Scholar 

  17. T. Matsuo, T. Goto, J. Takahashi, Adv. Compos. Mater 24(3), 249–268 (2015). https://doi.org/10.1080/09243046.2014.886754

    Article  Google Scholar 

  18. Q. Guo, I. Ohsawa, J. Takahashi, Adv. Compos. Mater (2019). https://doi.org/10.1080/09243046.2019.1576011

    Article  Google Scholar 

  19. Q. Zhang, X. Cheng, J. Zhang, S. Wang, Y. Cheng, T. Zhang, Compos. Part B: Eng. 107, 75–83 (2016)

    Article  Google Scholar 

  20. G. Tushar, D. Shah, S.J. Joshi, K.M. Patel, IOP Conf. Ser.: Mater. Sci. Eng. 561(1), 012074 (2019). https://doi.org/10.1088/1757-899X/561/1/012074

    Article  Google Scholar 

  21. P.K. Mishra, A.K. Pradhan, M.K. Pandit, J. Adhes. Sci. Tech. 30(7), 708–728 (2016). https://doi.org/10.1080/01694243.2015.1121851

    Article  Google Scholar 

  22. W. Yi, T. Matsuo, I. Ohsawa, J. Takahashi, J. Reinf. Plast. Compos. 33(14), 1305–1315 (2014)

    Article  Google Scholar 

  23. B.K. Chaurasia, D. Kumar, V.A. Maheshbhai, Recent Advances in Manufacturing, Automation, Design and Energy Technologies (Springer, Singapore, 2022), pp.693–703

    Book  Google Scholar 

  24. A. Guenanou, A. Houmat, Eng. Optim. 50(5), 766–780 (2018). https://doi.org/10.1080/0305215X.2017.1347924

    Article  MathSciNet  Google Scholar 

  25. Van Tho, Hoang, Young Jin Yum, 2158–2161, (2014). https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE06069776

  26. H.Y. Choi, H.S. Wang, F.-K. Chang, J. Comp. Mater. 26(6), 804–827 (1992)

    Article  Google Scholar 

  27. S.Y. Kandukuri, A. Pai, J. Manikandan, Inst. Eng. India Ser. C 103, 939–948 (2022). https://doi.org/10.1007/s40032-022-00808-w

    Article  Google Scholar 

  28. T. Ouyang, W. Sun, Z. Guan, R. Tan, Z. Li, Compos. Struct. 206, 791–800 (2018). https://doi.org/10.1016/j.compstruct.2018.08.080

    Article  Google Scholar 

  29. P. Carrara, D. Ferretti, F. Freddi, Compos. B Eng. 45(1), 800–810 (2013). https://doi.org/10.1016/j.compositesb.2012.04.029

    Article  Google Scholar 

  30. da Silva, C. A. N., J. Ciambella, Joaquim AO Barros, I. G. Costa (2018). https://repositorium.sdum.uminho.pt/bitstream/1822/72175/1/IC_207.pdf

  31. T.N. Geleta, K. Woo, B.K. Lee, Int. J. Aeronaut. Space Sci. 19, 363–374 (2018). https://doi.org/10.1007/s42405-018-0038-y

    Article  Google Scholar 

  32. Z.Y. Pan, Q.F. Duan, Y.C. Zhong, S.X. Li, D.F. Cao, Strength Mater. 50(1), 203–210 (2018). https://doi.org/10.1007/s11223-018-9960-2

    Article  Google Scholar 

  33. E. Kappel, D. Stefaniak, C. Hühne, Compos. Struct. 106, 615–625 (2013). https://doi.org/10.1016/j.compstruct.2013.07.020

    Article  Google Scholar 

  34. G. Pitarresi, U. Galietti, Strain 46(5), 446–459 (2010). https://doi.org/10.1111/j.1475-1305.2009.00660.x

    Article  Google Scholar 

  35. Z. Yang, J. Zhang, Y. Xie, B. Zhang, B. Sun, H. Guo, Appl. Comp. Mater. 24(6), 1447–1458 (2017)

    Article  Google Scholar 

  36. A. Makeev, G. Seon, Y. Nikishkov, E. Lee, J. Comp. Mater. 49(7), 783–794 (2001). https://doi.org/10.1177/0021998314525979

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the Department of Mechanical Engineering, National Institute of Technology Jamshedpur, Inida, Ms Soma PUF Metal Pvt. Ltd., Jamshedpur and Auto Cluster Jamshedpur for providing facilities and necessary support in fabricating composite laminates and conducting experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasia, B.K., Kumar, D. & Paswan, M.K. Experimental Studies of Failure in L-Shaped Carbon Fiber-Reinforced Polymer Composite Under Pullout and Four-Point Bending. J. Inst. Eng. India Ser. D 104, 569–579 (2023). https://doi.org/10.1007/s40033-022-00411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-022-00411-4

Keywords

Navigation