Skip to main content
Log in

Workability Studies on Al6061 Alloy and Al6061 Metal Matrix Composites Reinforced with Silicon Carbide Particles Under Cold Backward Extrusion

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

In the present work, the effect of cold backward extrusion on non-annealed and annealed Al6061 alloy and Al6061 metal matrix composites (MMCs) reinforced with SiC particles is analysed. The specimens were machined to prescribed size and subjected to cold backward extrusion. Brinell hardness and Ultimate Tensile Strength (UTS) were determined before and after annealing. Microstructure was examined using optical microscope. Scanning electron microscope was used to analyse specimen fracture surface. Al6061-MMCs containing 10% SiC particulates demonstrated better hardness of 62 BHN (without annealing) and 108 BHN (with annealing) compared to base Al6061 alloy. Improved hardness was observed in base alloy as well as composites after cold forging. Microstructure features revealed distribution of large and small grains in Al6061 alloys and comparatively smaller grain distribution in Al6061-MMCs, Zinc stearate lubricant was applied to work piece to minimize the friction between punch and work piece. Fracture of both Al6061 alloy and MMC was observed during backward extrusion due to brittleness of material and induced stresses during casting and machining (without annealing). Some of the common defects such as centre burst and surface cracking were also observed in both as-cast alloy and composites (without annealing). Annealed base alloy and MMC demonstrated good quality of extrusion without surface defects under cold forging conditions. Overall it can be concluded that cold backward extrusion is not advisable for Al6061 alloy and composite without annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A.S. Verma, M.S. Cheema, S. Kant, N.M. Suri, Porosity study of developed Al–Mg–Si/bauxite residue metal matrix composite using advanced stir casting process. Arab. J. Sci. Eng. 44(2), 1543–1552 (2019)

    Article  Google Scholar 

  2. M. Kumar, R.K. Gupta, A. Pandey, A review on fabrication and characteristics of metal matrix composites fabricated by stir casting. Mater. Sci. Eng. 377(1), 012125 (2017)

    Google Scholar 

  3. T. Sasimurugan, K. Palanikumar, Analysis of the machining characteristics on surface roughness of a hybrid aluminium metal matrix composite (Al6061–SiC–Al2O3). J. Miner. Mater. Charact. Eng. 10, 1213–1224 (2011)

    Google Scholar 

  4. J. Hashim, L. Looney, M.S. Hashmi, Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 92, 1–7 (1999)

    Article  Google Scholar 

  5. M.K. Akbari, O. Mirzaee, H.R. Baharvandi, Fabrication and study on mechanical properties and fracture behaviour of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 46, 199–205 (2013)

    Article  Google Scholar 

  6. Y.S. Prakash, M.G. Shankar, S.S. Sharma, A. Kini, Property enhancement during artificial aging of Al6061– silicon oxide metal matrix composites. Mater. Today Proc. 5, 24186–24193 (2018)

    Article  Google Scholar 

  7. S.H. Lee, Y. Saito, T. Sakai, H. Utsunomiya, Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater. Sci. Eng. A 325, 228–235 (2002)

    Article  Google Scholar 

  8. P. Mukhopadhyay, Alloy designation, processing, and use of AA6XXX series aluminium alloys. ISRN Metall. 165082, 1–15 (2012)

    Article  Google Scholar 

  9. N.K. Maurya, M. Maurya, A.K. Srivastava, S.P. Dwivedi, A. Kumar, S. Chauhan, Investigation of mechanical properties of Al 6061/SiC composite prepared through stir casting technique. Mater. Today Proc. 25(4), 755–758 (2019)

    Google Scholar 

  10. J.S.S. Babu, C.H. Lee, G.K. Chung, Study of the mechanical and workability properties of extruded aluminium (Al6061) based composites reinforced with MWCNTs. J. Mater. Res. 9(3), 5278–5292 (2020)

    Google Scholar 

  11. M. Sucharitha, B. Ravisankar, Preparation and characterization of aluminium metal matrix composites. Adv. Sci. Eng. Med. 10, 304–307 (2018)

    Article  Google Scholar 

  12. M. Nakai, G. Itoh, The effect of microstructure on mechanical properties of forged 6061 aluminum alloy. Mater. Trans. 55, 114–119 (2014)

    Article  Google Scholar 

  13. C. Saravanan, K. Subramanian, V.A. Krishnan, R.S. Narayanan, Effect of particulate reinforced aluminium metal matrix composite—a review. Mech. Mech. Eng. 19, 23–30 (2015)

    Google Scholar 

  14. Athula S, Premnatha G, Sunilb B and Rajeev VR (2011) Elevated temperature wear behaviour of aluminium alloy (Al 6061). In: Proceedings of the national conference on latest trends in mec

  15. S. Shubham, S. Jujhar, K.G. Munish, M. Mozammel, P.D. Shashi, S. Ambuj, C. Somnath, S. Rupinder, Y.P. Danil, E.K. Mehmet, Investigation on mechanical, tribological and microstructural properties of Al–Mg–Si–T6/SiC/muscovite-hybrid metal-matrix composites for high strength applications. J. Market. Res. 12, 1564–1581 (2021)

    Google Scholar 

  16. A. Alireza, A. Ali, R.B. Hamid, Dry sliding tribological behavior and mechanical properties of Al2024-5wt% B4C nanocomposite produced by mechanical milling and hot extrusion. Mater. Des. 55, 471–481 (2014)

    Article  Google Scholar 

  17. A. Hafeez, V. Senthilkumar, Experimental investigation on newly developed ultrafine-grained aluminium based nano-composites with improved mechanical properties. Mater. Des. 37, 182–192 (2012)

    Article  Google Scholar 

  18. X. Jiang, M. Galano, F. Audebert, Extrusion textures in Al6061alloy and 6061/SiCp nanocomposites. J. Miner. Mater. Charact. Eng. 88, 111–118 (2014)

    Article  Google Scholar 

  19. G. Wei, W. Qudong, Y. Bing, L. Xiaochun, L. Xintao, Z. Hao, Microstructural refinement and homogenization of Mg–SiC nanocomposites by cyclic extrusion compression. Mater. Sci. Eng. A 556, 267–270 (2012)

    Article  Google Scholar 

  20. Sh. Rizaneh, G.H. Borhani, M. Tavoosi, Synthesis andcharacterization of Al (Al2O3-TiB2/Fe) nanocomposite by means of mechanical alloying and hot extrusion processes. Adv. Powder Technol. 25, 1693–1698 (2014)

    Article  Google Scholar 

  21. K.B. Nie, K.K. Deng, X.J. Wang, W.M. Gan, F.J. Xu, K. Wu et al., Microstructures and mechanical properties of SiCp/AZ91magnesium matrix nanocomposites processed by multidirectional forging. J. Alloy Compd. 622, 1018 (2015)

    Article  Google Scholar 

  22. G.S. Ham, M.S. Baek, J.H. Kim et al., Effect of heat treatment on tensile and fatigue deformation behavior of extruded Al-12 wt.%Si alloy. Met. Mater. Int. 23, 35–42 (2017). https://doi.org/10.1007/s12540-017-6351-3

    Article  Google Scholar 

  23. Davis CHJ (1995) Key Engineering Materials, ed. by Newaz GM, Neber-Aeschbacher H, Wohlbie FH, Critical issues in the extrusion of particle reinforced metal matrix composites, vol 104–107, Tech Publications, Zurich Switzerland, pp. 447–458

  24. Y. Brechet, J.D. Embury, S. Tao, L. Luo, Acta. Metall. Mater. 39, 1781–1786 (1993)

    Article  Google Scholar 

  25. C.W. Lawrence, P.M. Mummery, J.H. Tweed, J. Mater. Sci. Lett. 12, 647–651 (1993)

    Article  Google Scholar 

  26. H. Lagace, D.J. Lloyd, Can. Met. Q. 28, 145–152 (1989)

    Article  Google Scholar 

  27. M.K. Surappa, J. Mater. Sci. Lett. 12, 1272–1273 (1993)

    Article  Google Scholar 

  28. M. Gupta, R. Sikand, A.K. Gupta, Scr. Metall. Mater. 30, 1343–1346 (1994)

    Article  Google Scholar 

  29. B. Dutta, I. Samajdar, M.K. Surappa, Mat. Sci. Technol. 14, 36–46 (1997)

    Article  Google Scholar 

  30. M. Lotfpour, M. Emamy, S.H. Allameh, B. Pourbahari, Effect of hot extrusion on microstructure and tensile properties of Ca modified Mg-Mg2Si composite, procedia. Mater. Sci. 11, 38–43 (2015)

    Google Scholar 

  31. Y. Hong-Chen, W. Hui-Yuan, C. Lei, Z. Min, W. Cheng, L. Chao, J. Qi-Chuan, Spheroidization of primary Mg2Si in Al-20Mg2Si-4.5Cu alloy modified with Ca and Sb during T6 heat treatment process. Mater. Sci. Eng. A 685, 31–38 (2017)

    Article  Google Scholar 

  32. M. Emamy, M. Khodadadi, A. Honarbakhsh Raouf, N. Nasiri, The influence of Ni addition and hot-extrusion on the microstructure and tensile properties of Al–15%Mg2Si composite. Mater. Des. 46, 381–390 (2013)

    Article  Google Scholar 

  33. S.E. VaziriYeganeh, A. Razaghian, M. Emamy, The influence of Cu–15P master alloy on the microstructure and tensile properties of Al–25wt%Mg2Si composite before and after hot extrusion. Mater. Sci. Eng. A 566, 1–7 (2013)

    Article  Google Scholar 

  34. C. Montalba, K. Ramam, D.G. Eskin, E.M. Ruiz Navas, O. Prat, Fabrication of a novel hybrid AlMg5/SiC/PLZT metal matrix composite produced by hot extrusion. Mater. Des. 69, 213–218 (2015)

    Article  Google Scholar 

  35. E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  36. K. Seong-Hoon, L. Kwang-Seok, L. Young-Seon, Evaluation of interfacial friction condition by boss and rib test based on backward extrusion. Int. J. Mech. Sci. 53, 59–64 (2011). https://doi.org/10.1016/j.ijmecsci.2010.11.001

    Article  Google Scholar 

  37. M.I. Omolayo, T.O. Sunday, P.B. Ojo, A.A. Sunday, P.O. Imhade, T.A. Esther, The effects of lubrication on temperature distribution of 6063 aluminium alloy during backward cup extrusion process. J. Mater. Res. Technol. 8(1), 1175–1187 (2019). https://doi.org/10.1016/j.jmrt.2018.08.006

    Article  Google Scholar 

  38. S. Rajasekaran, N.K. Udayashankar, J. Nayak, T4 and T6 Treatment of 6061 Al-15 Vol.% SiC P Composite. ISRN Mater. Sci. (2012). https://doi.org/10.5402/2012/374719

    Article  Google Scholar 

  39. C.S. Ramesh, A. Hirianiah, K.S. Harishanad, N.P. Noronha, A review on hot extrusion of metal matrix composites (MMC’s). Int. J. Eng. Sci. 1(10), 30–35 (2012)

    Google Scholar 

  40. Prasad VVB, Bhat BVR, Mahajan YR, Ramakrishnan P (2001) Effect of extrusion parameters on structure and properties of 2124 aluminum alloy matrix composites. pp. 841–853.

  41. R. Venkatesh, S. Srinivas, Effect of hot and cold forging on hardness, tensile strength and microstructure of Al6061 metal matrix composites reinforced with silicon carbide particles. Indian Foundry J. 65, 25–39 (2019)

    Google Scholar 

  42. ASTM B221–13 (2013) Standard specification for aluminum and aluminum-alloy extruded bars, rods, wire, profiles, and tubes. ASTM International

  43. Bains HS, and Manna A (2010) A study on turning of Al (6063)/5 vol.% SiC and Al(6063)/10 vol.% SiC-MMC. In: Talwandi S, Bathinda D, National conference on advancements and futuristic trends in mechanical and materials engineering, Yadavindra College Engineering.

  44. H. Joardar, N.S. Das, G. Sutradhar, An experimental study of effect of process parameters in turning of LM6/SiCP metal matrix composite and its prediction using response surface methodology. Int. J. Eng. Sci. Technol Afr. J. Online (AJOL) 3(8), 132–141 (2011)

    Article  Google Scholar 

  45. R. Behera, N.R. Mohanta, G. Sutradhar, Distribution of SiC particulates in stir cast aluminium alloy metal matrix composites and its effect on mechanical properties. Int. J. Emerg. Trends Eng. Dev. 1, 194–200 (2012)

    Google Scholar 

  46. M.S. Loveday, T. Gray, J. Aegerter, Tensile testing of metallic materials : A review. Sustain. Growth Program 1, 1–171 (2002)

    Google Scholar 

  47. C.S. Ramesh, R. Keshavamurthy, G.J. Naveen, Effect of extrusion ratio on wear behaviour of hot extruded Al6061–SiCp (Ni–P coated) composites. Wear 271(9–10), 1868–1877 (2011)

    Article  Google Scholar 

  48. B. Gobalakrishnan, C. Rajaravi, G. Udhayakumar et al., Effect of ceramic particulate addition on aluminium based ex-situ and in-situ formed metal matrix composites. Met. Mater. Int. 27, 3695–3708 (2021). https://doi.org/10.1007/s12540-020-00868-6

    Article  Google Scholar 

  49. A. Pramanik, L.C. Zhang, J.A. Arsecularatne, Deformation mechanisms of MMCs under indentation. Compos. Sci. Technol. 68(6), 1304–1312 (2008)

    Article  Google Scholar 

Download references

Funding

This research recieved no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Niranjan.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, R., Niranjan, C.A., Srinivas, S. et al. Workability Studies on Al6061 Alloy and Al6061 Metal Matrix Composites Reinforced with Silicon Carbide Particles Under Cold Backward Extrusion. J. Inst. Eng. India Ser. D 104, 373–389 (2023). https://doi.org/10.1007/s40033-022-00400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-022-00400-7

Keywords

Navigation