Skip to main content
Log in

Influence of Graphene Addition on Microstructure and Mechanical Properties of Homogenized Al4032–Graphene Composites Processed Through ECAP

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

In the present work, an Al4032 alloy reinforced with various contents of graphene (0, 1, 3, 5 wt.%) was fabricated via stir casting and an 8 h homogenization process. The Al4032–graphene composites were severely deformed by equal channel angular pressing (ECAP). The microstructure and fractography of composites at different processing stages have been investigated using optical microscopy and scanning electronic microscopy. The results reveal that the graphene sheets were dispersed homogeneously and Al4032 matrix grains were significantly refined with ECAP process. Moreover, the agglomeration of reinforcement with the addition of 3% and 5% of graphene in matrix alloy is also refined and bounded in the grain boundaries. The composites mechanical properties were assessed as a function of the number of passes in ECAP process. After 6 runs of ECAP, the hardness and tensile characteristics of the material improved considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Azar, B. Sadri, A. Nemati et al., Investigating the microstructure and mechanical properties of aluminum-matrix reinforced-graphene nanosheet composites fabricated by mechanical milling and equal-channel angular pressing. Nanomaterials 9, 1070 (2019). https://doi.org/10.3390/nano9081070

    Article  Google Scholar 

  2. A. Bisht, M. Srivastava, R. Manoj, I. Lahiri, D. Lahiri, Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater. Sci. Eng., A 695, 20–28 (2017). https://doi.org/10.1016/j.msea.2017.04.009

    Article  Google Scholar 

  3. M. Bodunrin, K. Alaneme, L. Chown, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Market. Res. 4, 434–445 (2015). https://doi.org/10.1016/j.jmrt.2015.05.003

    Article  Google Scholar 

  4. V. Chak, H. Chattopadhyay, Fabrication and heat treatment of graphene nanoplatelets reinforced aluminium nanocomposites. Mater. Sci. Eng., A 791, 139657 (2020). https://doi.org/10.1016/j.msea.2020.139657

    Article  Google Scholar 

  5. A. Chidambaram, S.B. Prabu, K.A. Padmanabhan, Microstructure and mechanical properties of AA6061–5wt.%TiB2 in-situ metal matrix composite subjected to equal channel angular pressing. Mater. Sci. Eng., A 759, 762–769 (2019). https://doi.org/10.1016/j.msea.2019.05.068

    Article  Google Scholar 

  6. S. Das, S. Khanna, D.P. Mondal, Graphene-reinforced aluminum hybrid foam: response to high strain rate deformation. J. of Materi Eng and Perform 28, 526–534 (2019). https://doi.org/10.1007/s11665-018-3815-7

    Article  Google Scholar 

  7. K. Deepak. et al. (2021). Morphological and mechanical characterization of Al-4032/SiC/GMP hybrid composites. https://www.researchsquare.com/article/rs-232039/v1

  8. R. Derakhshandeh-Haghighi, S.A. JenabaliJahromi, The effect of multi-pass equal-channel angular pressing (ecap) for consolidation of aluminum-nano alumina composite powder on wear resistance. J. of Mater Eng Perform 25, 687–696 (2016). https://doi.org/10.1007/s11665-016-1888-8

    Article  Google Scholar 

  9. E. Ghasali, P. Sangpour, A. Jam et al., Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Archiv. Civ. Mech. Eng 18, 1042–1054 (2018). https://doi.org/10.1016/j.acme.2018.02.006

    Article  Google Scholar 

  10. Z. Horita, K. Oh-ishi, K. Kaneko, Microstructure control using severe plastic deformation. Sci. Technol. Adv. Mater. 7, 649–654 (2006). https://doi.org/10.1016/j.stam.2006.05.011

    Article  Google Scholar 

  11. D. Hülya, G. Canser, Ç. Nilay, Y. Melis, An investigation into the wear behavior of aged Alumix321/SiC composites fabricated by hot pressing. Rev. Metal. 55(3), e148 (2019). https://doi.org/10.3989/revmetalm.148

    Article  Google Scholar 

  12. C. Jeon, Y. Jeong, J. Seo et al., Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int. J. Precis. Eng. Manuf 15, 1235–1239 (2014). https://doi.org/10.1007/s12541-014-0462-2

    Article  Google Scholar 

  13. Md. Khan, R.U. Din, A. Wadood et al., Effect of graphene nanoplatelets on the physical and mechanical properties of Al6061 in fabricated and T6 thermal conditions. J. Alloy. Compd. 790, 1076–1091 (2019). https://doi.org/10.1016/j.jallcom.2019.03.222

    Article  Google Scholar 

  14. P.K. Kumar et al., Effect of compaction pressure on mechanical properties of powder steel 0.06% C – 22% Cr – 13% Ni – 5% Mn – 2% Mo obtained by mechanical alloying followed by annealing. Met Sci Heat Treat 63, 132–139 (2021). https://doi.org/10.1007/s11041-021-00659-9

    Article  Google Scholar 

  15. P.K. Kumar, N.V. Sai, A.G. Krishna, Influence of sintering conditions on microstructure and mechanical properties of alloy 218 steels by powder metallurgy route. Arab. J. Sci. Eng. 10, 116–121 (2018). https://doi.org/10.1007/s13369-017-3015-z

    Article  Google Scholar 

  16. K. Kumar et al., Effect of Y2O3 addition and cooling rate on mechanical properties of Fe-24Cr-20Ni-2Mn steels by powder metallurgy route. Compos. commun 10, 116–121 (2018). https://doi.org/10.1016/j.coco.2018.09.003

    Article  Google Scholar 

  17. D. Kumar, K.S. Pradeep, Microstructural and mechanical characterization of Al-4032 based metal matrix composites. Mater Today: Proc 18, 2563–2572 (2019). https://doi.org/10.1016/j.matpr.2019.07.114

    Article  Google Scholar 

  18. F.H. Latief, El. Sayed, M. Sherif, Effects of sintering temperature and graphite addition on the mechanical properties of aluminum. J. Ind. Eng. Chem. 18, 2129–2134 (2012). https://doi.org/10.1016/j.jiec.2012.06.007

    Article  Google Scholar 

  19. T.M. Lillo, Enhancing ductility of AL6061+10wt.% B4C through equal-channel angular extrusion processing. Mater. Sci. Eng., A 410, 443–446 (2005). https://doi.org/10.1016/j.msea.2005.08.093

    Article  Google Scholar 

  20. J. Liu, U. Khan et al., Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: powder synthesis and prepared composite characteristics. Mater. Des. 94, 87–94 (2016). https://doi.org/10.1016/j.matdes.2016.01.031

    Article  Google Scholar 

  21. G.K. Manjunath, G.V. Preetham Kumar, K. Udaya Bhat et al., Microstructure and mechanical properties of cast Al-5Zn-2Mg alloy subjected to equal-channel angular pressing. J Mater Eng and Perform 27, 5644–5655 (2018). https://doi.org/10.1007/s11665-018-3691-1

    Article  Google Scholar 

  22. L.F. Mondolfo, Aluminium Alloys, Butterworths & Co Ltd, Elsevier. https://www.elsevier.com/books/aluminum-alloys/mondolfo/978-0-408-70932-3 (1976)

  23. L.K. Pillari et al., Processing and characterization of graphene and multi-wall carbon nanotube-reinforced aluminium alloy AA2219 composites processed by ball milling and vacuum hot pressing. Metallogr. Microstruct. Anal. 6, 289–303 (2017). https://doi.org/10.1007/s13632-017-0365-6

    Article  Google Scholar 

  24. R. Raj, J.M.S. YoganandhSaravanan et al., Effect of graphene addition on the mechanical characteristics of AA7075 aluminium nanocomposites. Carbon Lett (2020). https://doi.org/10.1007/s42823-020-00157-7

    Article  Google Scholar 

  25. N.V. Rengasamy et al., An analysis of mechanical properties and optimization of edm process parameters of Al 4032 alloy reinforced with Zrb2 and Tib2 In-Situ composites. J. Alloy. Compd. 662, 325–338 (2016). https://doi.org/10.1016/j.jallcom.2015.12.023

    Article  Google Scholar 

  26. M.R. Rezaei, S.G. Shabestari, S.H. Razavi, Effect of ECAP consolidation process on the interfacial characteristics of Al-Cu-Ti metallic glass reinforced aluminum matrix composite. Compos. Interfaces 25, 669–679 (2018). https://doi.org/10.1080/09276440.2018.1439619

    Article  Google Scholar 

  27. M. Saravanan, R.M. Pillai, K.R. Ravi, B.C. Pai, M. Brahmakumar, Development of ultrafine grain aluminium–graphite metal matrix composite by equal channel angular pressing. Compos. Sci. Technol. 67, 1275–1279 (2007). https://doi.org/10.1016/j.compscitech.2006.10.003

    Article  Google Scholar 

  28. S.E. Shin, D.H. Bae, Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Compos. A Appl. Sci. Manuf. 78, 42–47 (2015). https://doi.org/10.1016/j.compositesa.2015.08.001

    Article  Google Scholar 

  29. S. Soltani, R.R.T. KhosroshahiMousavian et al., Stir casting process for manufacture of Al–SiC composites. Rare Met. 36, 581–590 (2017). https://doi.org/10.1007/s12598-015-0565-7

    Article  Google Scholar 

  30. V. Subbaiah, B. Palampalle, K. Brahmaraju, Microstructural analysis and mechanical properties of pure Al–GNPs composites by stir casting method. J. Inst. Eng. India Ser. C 100, 493–500 (2019). https://doi.org/10.1007/s40032-018-0491-1

    Article  Google Scholar 

  31. Y.P. Sun, J. Han, Y. Tu, Z. Bai, Y.Q. He, Microstructure and mechanical properties of a spray deposited SiCp/Al composite processed by hot extrusion and equal channel angular pressing. Mater. Res. Innovations 18, 220–223 (2014). https://doi.org/10.1179/1432891714Z.000000000687

    Article  Google Scholar 

  32. T. Tański, P. Snopiński, W. Borek, Strength and structure of AlMg3 alloy after ECAP and post-ECAP processing. Mater. Manuf. Processes 32, 1368–1374 (2017). https://doi.org/10.1080/10426914.2016.1257131

    Article  Google Scholar 

  33. Ç. Uğur, G. Turkey, Nano platelets reinforced a composite fabricated through ultra-high frequency induction sintering. Rev. Metal. 57(1), e188 (2021). https://doi.org/10.3989/revmetalm.188

    Article  Google Scholar 

  34. M. Venkatasudhahar et al., Influence of stacking sequence and fiber treatment on mechanical properties of carbon-jute-banana reinforced epoxy hybrid composites. Int. J. Polym. Anal. Charact. 25, 238–251 (2020). https://doi.org/10.1080/1023666X.2020.1781481

    Article  Google Scholar 

  35. R. Vignesh, R. Harichandran, U. Vignesh, M. Thangavel, S.B. Chandrasekhar, Influence of hot extrusion on strain hardening behaviour of graphene platelets dispersed aluminium composites. J. Alloy. Compd. 855, 157448 (2021). https://doi.org/10.1016/j.jallcom.2020.157448

    Article  Google Scholar 

  36. J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater. 66, 594–597 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.012

    Article  Google Scholar 

  37. A. Warner, J. Bell, T. Stephenson, Opportunities for new graphitic aluminium metal matrix composite. Mater. Sci. Technol. 14, 843–850 (1998). https://doi.org/10.1179/mst.1998.14.9-10.843

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anna University College of Engineering, Chennai, India, for providing ECAP and mechanical testing facilities. The SEM analysis in the present investigation was carried out at the Indian Institute of Technology Madras (IITM), India.

Funding

Funding is not applicable to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sivarama Krishnarao.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnarao, R.S., Veeranna, V. & Krishna, A.G. Influence of Graphene Addition on Microstructure and Mechanical Properties of Homogenized Al4032–Graphene Composites Processed Through ECAP. J. Inst. Eng. India Ser. D 103, 203–216 (2022). https://doi.org/10.1007/s40033-021-00322-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-021-00322-w

Keywords

Navigation