Skip to main content
Log in

Numerical Modelling-Based Stability Analysis of Waste Dump Slope Structures in Open-Pit Mines-A Review

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

The depths of open-pit mines have been increasing in the last few decades. This transformation generates a vast amount of waste rock material per unit mining area imposing a significant economic, social and environmental liability on the mine operators. The scarcity of dumping land along with the rise in population, competing urbanization and associated environmental clearance problems require accommodating this ever-growing volume of waste rock material at restricted available space. On the contrary, the frequency of accidents due to the instability of the waste dump slope structures has also increased, resulting in significant fatalities, apart from the economic, social and environmental impacts of these disasters. Numerous scientific studies have been conducted to reduce the occurrence of such incidents. This paper conducts a critical review of the numerical modelling-based stability analysis of such waste dump slope structures. The popularly cited cases of dump slope instability have been analysed to synthesize pertinent findings regarding the approach of stability analysis, broader design criteria, and optimization. The critical parameters to numerical modelling-based design of a safe dump slope structure are discussed in detail. The significant output parameters, apart from the factor of safety, are also outlined for evaluating the state of stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L.W. Abramson, T.S. Lee, S. Sharma, G.M. Boyce, Slope Stability and Stabilization Methods, 2nd edn. (John Wiley & Sons Inc, New York, 2002)

    Google Scholar 

  2. N. Adibee, M. Osanloo, M. Rahmanpour, Adverse effects of coal mine waste dumps on the environment and their management. Environ. Earth Sci. 70(4), 1581–1592 (2013)

    Article  Google Scholar 

  3. T. Amarsaikhan. H. Shimada, S. Wahyudi, T. Sasaoka, A. Hamanaka, Optimization of Dump Bench Configuration to Improve Waste Dump Capacity of Narynsukhait Open Pit Coal Mine. Int. J. Geosci. 09, 379–396 (2018) https://doi.org/10.4236/ijg.2018.96024.

  4. Atlas Copco., Mining Methods in Underground Mining. Second Ed, 7–10. (2007)

  5. L. Banerjee, S. Chawla, A Finite Element Approach of Stability Analysis of Over Burden Dump Slope - A Case Study. In: Proceedings of the Indian Geotechnical Conference 2017, GeoNEst, India, 14–17 (2017)

  6. Y. Bao, J. Chen, X. Sun, X. Han, S. Song, Stability analysis of large waste dumps considering cracks and earthquake via a three-dimension numerical modeling: a case study of Zhujiabaobao waste dump. Q. J. Eng. Geol. Hydrogeol. (2019). https://doi.org/10.1144/qjegh2019-032

    Article  Google Scholar 

  7. Y. Bao, X. Han, J. Chen, W. Zhang, J. Zhan et al., Numerical assessment of failure potential of a large mine waste dump in Panzhihua City. China. Eng. Geol. 253, 171–183 (2019). https://doi.org/10.1016/j.enggeo.2019.03.002

    Article  Google Scholar 

  8. Y. Bao, X. Sun, J. Chen, W. Zhang, X. Han, J. Zhan, Stability assessment and dynamic analysis of a large iron mine waste dump in Panzhihua, Sichuan. China. Environ. Earth Sci. 78, 1–17 (2019). https://doi.org/10.1007/s12665-019-8043-4

    Article  Google Scholar 

  9. Z. Bednarczyk, Slope instabilities in polish open-pit mines. In: Stefano ALC, Luciano P, Claudio S (eds) Landslides and engineered slopes experience, theory and practice. In: Proceedings of the 12th international symposium on Landslides 2016. CRC Press, Boca Raton, Italy (2016)

  10. Z. Bednarczyk, Slope stability analysis for the design of a new lignite open-pit mine. Procedia Eng. 191, 51–58 (2017). https://doi.org/10.1016/j.proeng.2017.05.153

    Article  Google Scholar 

  11. P.K. Behera, K. Sarkar, A.K. Singh, A.K. Verma, T.N. Singh, Dump slope stability analysis – a case study. J. Geol. Soc. India 88, 1–11 (2016)

    Article  Google Scholar 

  12. A.W. Bishop, The use of the slip circle for the stability analysis of slopes. Geotechnique 5(1), 7–17 (1955)

    Article  Google Scholar 

  13. A.W. Bishop, The stability of tips and spoil heaps. Q. J. Eng. Geol. 6(3 & 4), 335–376 (1973)

    Article  Google Scholar 

  14. G.E. Blight, A.B. Fourie, Catastrophe revisited - Disastrous flow failures of mine and municipal solid waste. Geotech. Geol. Eng. 23, 219–248 (2005). https://doi.org/10.1007/s10706-004-7067-y

    Article  Google Scholar 

  15. J. Burgess, G.A. Fenton, D.V. Griffiths, Probabilistic Seismic Slope Stability Analysis and Design. Can. Geotech. J. 56(9) (2019) https://doi.org/10.1139/cgj-2017-0544.

  16. F. Cai, K. Ugai, Numerical analysis of rainfall effects on slope stability. Int. J. Geomech. 4(2), 69–78 (2004)

    Article  Google Scholar 

  17. F. Cai, K. Ugai, A. Wakai, Q. Li, Effects of horizontal drains on slope stability under rainfall by three-dimensional finite element analysis. Comput. Geotech. 23, 255–275 (1998)

    Article  Google Scholar 

  18. J.A. Caldwell, A. Moss, Simplified stability analysis. In: Mccarter MK (ed) design of non-impounding mine waste dumps. Society for Mining, Metallurgy, and Exploration, Englewood, 47–61 (1985)

  19. J.N. Carras, A.R. Leventhal, Spontaneous combustion in opencut coal mining spoil piles: a challenging legacy. In: Proceedings of the ISRM International Symposium International Society for Rock Mechanics, Melbourne (2000)

  20. M. Chang, Y. Liu, C. Zhou, H. Che, Hazard assessment of a catastrophic mine waste debris flow of Hou Gully, Shimian, China. Eng. Geol. 275 (2020) https://doi.org/10.1016/j.enggeo.2020.105733.

  21. Y. Cho, Y. Song, Deformation measurements and a stability analysis of the slope at a coal mine waste dump. Ecol. Eng. 68, 189–199 (2014). https://doi.org/10.1016/j.ecoleng.2014.03.005

    Article  Google Scholar 

  22. E.M. Dawson, W.H. Roth, A. Drescher, Slope Stability Analysis by Strength Reduction. Geotechnique 49(6), 835–840 (1999) https://doi:https://doi.org/10.1680/geot.1999.49.6.835.

  23. R.F. Dawson, N.R. Morgenstern, A.W. Stokes, Liquefaction flowslides in Rocky Mountain coal mine waste dumps. Can. Geotech. J. 35, 328–343 (1988)

    Article  Google Scholar 

  24. DMT Group (2020) csm_Bergbau-1920_e124fb27d6.png (425×290) n.d. https://www.dmt-group.com/fileadmin/_processed_/8/0/csm_Bergbau-1920_e124fb27d6.png. Accessed 31 October 2020

  25. J.M. Duncan, S.G. Wright, T.L. Brandon, Soil Strength and Slope Stability (Wiley, New York, 2014)

    Google Scholar 

  26. E. Eberhardt, D. Stead, J.S. Coggan, Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. Int. J. Rock Mech. Min. Sci. 41, 69–87 (2004)

    Article  Google Scholar 

  27. EY, European lignite mines benchmarking—sanitized report (2014). https://www.ey.com/Publication/vwLUAssets/EY_European_Lignite_Mines_Benchmarking_2014/$FILE/EY-European-Lignite-Mines-Benchmarking-2014.pdf. Accessed 14 June 2020

  28. M. Fahey, T.A. Newson, Fujiyasu., Engineering with Tailings, Environmental Geotechnics, In: Proceedings of L. G. deMello, M. A. A. Almeida (eds.), 4th ICEG, Balkema, Lisse, Netherlands, 2, 947–973 (2002)

  29. M. Farias, D. Naylor, Safety analysis using finite elements. Comput. Geotech. 22(2), 165–181 (1998)

    Article  Google Scholar 

  30. W. Fellenius, Calculation of the stability of earth dams. In: Transactions, 2nd congress on large dams, 4, 445 (1936)

  31. Z. Feng, C. Lo, Q. Lin, The characteristics of the seismic signals induced by landslides using a coupling of discrete element and finite difference methods. Landslides, 1–14 (2016) https://doi.org/10.1007/s10346-016-0714-6.

  32. W. Fuentes, M. Gil, J. Duque, Dynamic simulation of the sudden settlement of a mine waste dump under earthquake loading. Int. J. Min. Reclamat. Environ. 33, 1–19 (2018). https://doi.org/10.1080/17480930.2018.1483703

    Article  Google Scholar 

  33. S. Gabriel, M. Scott, Mine Waste Failure: An Analysis of Emperical and Graphical Runout Prediction Methods. Vancouver, Canada. Dissertation, University of British Columbia. (2011)

  34. W. Gao, W. Gao, R. Hu, P. Xu, J. Xia, Microtremor survey and stability analysis of a soil-rock mixture landslide: a case study in Baidian town. China. Landslides 15, 1951–1961 (2018). https://doi.org/10.1007/s10346-018-1009-x

    Article  Google Scholar 

  35. Y. Gao, Y. Yin, B. Li, W.P. Wang, et al., Investigation and dynamic analysis of the long runout catastrophic landslide at the Shenzhen landfill on December 20, 2015, in Guangdong, China. Environ. Earth Sci. 76(1) (2017) https://doi.org/10.1007/s12665-016-6332-8.

  36. J.M. Gasmo, H. Rahardjo, E.C. Leong, Infiltration effects on stability of a residual soil slope. Comput. Geotech. 26(2), 145–165 (2000)

    Article  Google Scholar 

  37. A. Gens, E.E. Alonso, Aznalcollar dam failure. Part 2: Stability conditions and failure mechanism. Geotechnique 56(3), 185–201 (2006)

  38. D.V. Griffiths, P.A. Lane, Slope stability analysis by finite elements. Geotechnique 49(3), 387–403 (1999)

    Article  Google Scholar 

  39. Z. Guan, Study on stability of in pit dump with soft and weak base floor in open pit mine. Coal Sci. Technol. 1, 63–65 (2013)

    Google Scholar 

  40. G. Gupta, S.K. Sharma, G.S.P. Singh, Stability Analysis of Open-pit Dump Slopes. Dissertation Indian Institute of Technology (Banaras Hindu University), Varanasi, India (2018)

  41. G. Gupta, S.K. Sharma, G.S.P. Singh, 2018b. Assessment of Dump Structure Stability via Parametric Study Using Numerical Modeling. In: Proceedings of the Recent Challenges in Mining Industry. CSIR-CIMFR Dhanbad, India. 103–112.

  42. G. Gupta, S.K. Sharma, G.S.P. Singh, An Improved Numerical Modelling Approach for Assessment of Instability in Large Overburden Dump Structures. In: Proceedings of the 2nd International Conference on Opencast Mining Technology and Sustainability. NCL-Singrauli, India, 121–126 (2019)

  43. G. Gupta, S.K. Sharma, G.S.P. Singh, T. Verma, N. Kishore, Engineering Characterization of Dump Material for Numerical Modelling Based Stability Analysis of Slope Structures. In: Proceedings of the Advances in Mine Environment, Geotechniques and Ground Control (AMEGGC-2017). NIT Raipur, India, 24–30 (2017)

  44. H. Hajra, N. Peci, S. Mulaj, Spontaneous combustion of lignite in Bardh Mirash mines in Kosovo. In: Proceedings of the 9th international multidisciplinary scientific GeoConference—SGEM2009. Albena, Bulgaria (2009)

  45. L. Han, J. Shu, Q. Cai, H. Jing, H. Tian, Mechanical characteristics of dip basement effects on dump stability in the Shengli open pit mine in Inner Mongolia China. Arabian J. Geosci. 9(20), 750 (2016)

    Article  Google Scholar 

  46. HMSO: Report of the tribunal appointed to enquire into the disaster at Aberfan on October 21, 1966, HMSO, London, UK, 1967. https://stbarbara.com.au/wp-content/uploads/2019/09/2019.09.13-asx-2019-annual-report-1.pdf. Accessed 31 June 2020

  47. S. Huang, R. Speck, M. Xu, Evaluation of coal mine spoil pile instability in the interior Alaska. Environ. Eng. Geosci., 1–9 (1992) https://doi.org/10.2113/gseegeosci.xxix.1.1.

  48. X.W. Huang, S.Q. Liu, X.L. Sui, Y. Hu, Earthquake response analysis of soil-rock slope based on distribution of rocks. In: Proceedings of the 2018 International Forum on Construction, Aviation and Environmental Engineering-Internet of Things, Guangzhou, China (2018)

  49. O. Igwe, C. Chukwu, Slope stability analysis of mine waste dumps at a mine site in Southeastern Nigeria. Bull. Eng. Geol. Environ., 1–15 (2019)

  50. O. Igwe, W. Mode, O. Nnebedum, I. Okonkwo, I. Oha, The analysis of rainfall induced slope failures at Iva Valley area of Enugu state. Nigeria. Environ. Earth Sci. (2013). https://doi.org/10.1007/s12665-013-2647-x

    Article  Google Scholar 

  51. Itasca Consulting Group, Inc., FLAC Version 7.0 user’s manual. Minneapolis, Minnesota, USA (2011)

  52. A. Jahanfar, B. Dubey, B. Gharabaghi, S.B. Movahed, Landfill failure mobility analysis: A probabilistic approach. WASET: Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng., 10 (2016)

  53. N. Janbu, Application of composite slip surface for stability analysis. In: Proceedings of the European conference on stability of earth slopes, Stockholm, Sweden, 43–49 (1954)

  54. P. Jelínek, M. Marschalko, D. Lamich et al., Monitoring and analysis of burning in coal tailing dumps: a case study from the Czech Republic. Environ. Earth Sci. 73, 6601–6612 (2015)

    Article  Google Scholar 

  55. L. Jing, J.A. Hudson, Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci. 39, 409–427 (2002)

    Article  Google Scholar 

  56. O. Kasmer, R. Ulusay, C. Gokceoglu, Spoil pile instabilities with reference to a strip coal mine in Turkey: mechanisms and assessment of deformations. Environ. Geol. 49(4), 570–585 (2006). https://doi.org/10.1007/s00254-005-0092-1

    Article  Google Scholar 

  57. E. Khorasani, M. Amini, M. Farouq, E. Medley, Statistical analysis of bimslope stability using physical and numerical models. Eng. Geol. 254, 13–24 (2019). https://doi.org/10.1016/j.enggeo.2019.03.023

    Article  Google Scholar 

  58. M.G. Kitutu, A. Muwanga, J. Poesen, J.A. Deckers, Influence of soil properties on landslide occurrence in Bududa district, eastern Uganda. Afr. J. Agric. Res. 4(7), 611–620 (2009)

    Google Scholar 

  59. A. Knapen, M.G. Kitutu, J. Poesen et al., Landslides in a densely populated county at the footsteps of mount Elgon (Uganda): characteristics and causal factors. Geomorphology 73, 149–165 (2006)

    Article  Google Scholar 

  60. R. Koner, D. Chakravarty, Evaluation of Seismic Response of External Mine Overburden Dumps. In: Proceedings of the 5th International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California (2010)

  61. R. Koner, D. Chakravarty, Earthquake response of external mine overburden dumps: a micromechanical approach. Nat. Hazards 56, 941–959 (2010). https://doi.org/10.1007/s11069-010-9602-x

    Article  Google Scholar 

  62. R. Koner, D. Chakravarty, Characterization of overburden dump materials: a case study from the Wardha valley coal field. Bull. Eng. Geol. Environ., 1–14 (2015) https://doi.org/10.1007/s10064-015-0830-x.

  63. R. Koner, D. Chakravarty, Numerical analysis of rainfall effects in external overburden dump. Int. J. Min. Sci. Technol., 1–7 (2016) https://doi.org/10.1016/j.ijmst.2016.05.048.

  64. J. Krahn, The 2001 R.M. Hardy lecture: the limits of limit equilibrium analyses. Can. Geotech. J. 40(3), 643–660 (2003)

  65. M. Kupka, I. Herle, Arnold M. Advanced calculations of safety factors for slope stability. Int. J. Geotech. Eng. 3(4), 509–515 (2009) https://doi.org/10.3328/IJGE.2009.03.04.509-515.

  66. L. Lam, D.G. Fredlund, A general limit equilibrium model for three-dimensional slope stability analysis. Can. Geotech. J. 30, 905–919 (1993)

    Article  Google Scholar 

  67. F. Lavigne, P. Wassmer, C. Gomez, T.A. Davies et al., The 21 February 2005, catastrophic waste avalanche at Leuwigajah dumpsite, Bandung. Indonesia. Geoenviron. Disasters 1, 1–12 (2014)

    Google Scholar 

  68. Q. Li, H. Yuan, M. Zhong, Safety assessment of waste rock dump built on existing tailings ponds. J. Cent. South. Univ. 22, 2707–2718 (2015). https://doi.org/10.1007/s11771-015-2801-6

    Article  Google Scholar 

  69. Z.S. Li, A study on the mud-rock flow disaster in 1994 in the gold mine area of Tong guan Shaanxi. J. Catastrophology 10(3), 51–56 (1995)

    Google Scholar 

  70. H. Lin, W. Zhong, Influence of rainfall intensity and its pattern on the stability of unsaturated soil slope. Geotech. Geol. Eng. (2018). https://doi.org/10.1007/s10706-018-0631-7

    Article  Google Scholar 

  71. S. Liu, X. Huang, A. Zhou, J. Hu, W. Wang, Soil-rock slope stability analysis by considering the nonuniformity of rocks. Math. Probl. Eng., 1–15 (2018) https://doi.org/10.1155/2018/3121604.

  72. S. Liu, L. Shao, H. Li, Slope stability analysis using the limit equilibrium method and two finite element methods. Comput. Geotech. 63, 291–298 (2015)

    Article  Google Scholar 

  73. X.L. Liu, S.M. He, J.P. Qiao, Debris flow and its control in dadingshan mining area of lugu iron mine in sichuan province. Chinese J. Geological Hazard and Control 15(3), 64–68 (2004)

    Google Scholar 

  74. Y. Liu, H. Xiao, K. Yao, J. Hu, H. Wei, Rock-soil slope stability analysis by two-phase random media and finite elements. Geosci. Front. 9, 1649–1655 (2018). https://doi.org/10.1016/j.gsf.2017.10.007

    Article  Google Scholar 

  75. N.Q. Long, M.M. Buczek, L.P. Hien et al., Accuracy assessment of mine walls’ surface models derived from terrestrial laser scanning. Int. J. Coal Sci. Technol. 5(3), 328–338 (2018)

    Article  Google Scholar 

  76. B.K. Low, Reliability analysis of rock wedges. J. Geotech. Geoenviron. Eng. 123, 498–505 (1997)

    Article  Google Scholar 

  77. X. Lv, A. Wang, J. Wang, Seepage – damage coupling study of the stability of water- filled dump slope. Eng. Anal. Bound. Elem. 42, 77–83 (2013). https://doi.org/10.1016/j.enganabound.2013.08.010

    Article  MATH  Google Scholar 

  78. G.W. Ma, Stability analysis of Jinduicheng open-pit mine’s dump. Metal Mine 8, 32–34 (2004)

    Google Scholar 

  79. M.S. Masoudian, M.A. Hashemi, A. Tasalloti, A.M. Marshall, A general framework for coupled hydro-mechanical modelling of rainfall- induced instability in unsaturated slopes with multivariate random fields. Comput. Geotech. 115, 1–12 (2019). https://doi.org/10.1016/j.compgeo.2019.103162

    Article  Google Scholar 

  80. M.S. Masoudian, I.E. Zevgolis, A.V. Deliveris, A.M. Marshall, C.M. Heron, N.C. Koukouzas, Stability and characterization of spoil heaps in European surface lignite mines: a state - of - the - art review in light of new data. Environ. Earth Sci. 78, 1–18 (2019). https://doi.org/10.1007/s12665-019-8506-7

    Article  Google Scholar 

  81. T. Matsui, K.C. San, Finite element slope stability analysis by shear strength reduction technique. Soils Found. 32(1), 59–70 (1992)

    Article  Google Scholar 

  82. V. Matziaris, M.S. Masoudian, A.M. Marshall, C.M. Heron, Centrifuge modelling of rainfall-induced slope instability in sand and silty sand. In: Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, ICSMGE 2017. International Society for Soil Mechanics and Geotechnical Engineering, Korea (2017)

  83. Q. Meng, H. Wang, M. Cai, Q. Zhang, Multiscale strength reduction method for heterogeneous slope using hierarchical FEM / DEM modeling. Comput. Geotech. 115 (2019) https://doi.org/10.1016/j.compgeo.2019.103164.

  84. N.R. Morgenstern, V.E. Price, The analysis of the stability of general slip surfaces. Géotechnique 15(1), 79–93 (1965)

    Article  Google Scholar 

  85. Mt Owen Glendell Operations. Annual Review 2019 MGO MT OWEN / GLENDELL OPERATIONS 2019. https://www.mtowencomplex.com.au/en/publications/AEMR/Annual-Review-2019-Main-Report.pdf. Accessed 31 June 2020

  86. M.L. Napoli, M. Barbero, E. Ravera, C. Scavia, A stochastic approach to slope stability analysis in bimrocks. Int. J. Rock Mech. Min. Sci. 101, 41–49 (2018). https://doi.org/10.1016/j.ijrmms.2017.11.009

    Article  Google Scholar 

  87. C.W. Ng, Q. Shi, A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Comput. Geotech. 22(1), 1–28 (1998)

    Article  Google Scholar 

  88. V.U. Nguyen, J.A. Nemcik, R.N. Chowdhury, Some practical aspects of spoil pile stability by the two-wedge model. Min. Sci. Technol. 2, 57–68 (1984)

    Article  Google Scholar 

  89. T.A. Nolan, V. Kecojevic, Selection of overburden surface mining method in West Virginia by analytical hierarchy process. Int. J. Coal. Sci. Technol. 1(3), 306–314 (2014)

    Article  Google Scholar 

  90. J. Nyssen, D. Vermeersch, Slope aspect affects geomorphic dynamics of coal mining spoil heaps in Belgium. Geomorphology 123, 109–121 (2010)

    Article  Google Scholar 

  91. C.O. Okagbue, The geotechnical characteristics and stability of a spoil heap at a southwestern Pennsylvania coal mine. USA. Eng. Geol. 20, 325–341 (1984)

    Article  Google Scholar 

  92. K. Omraci, V. Merrien-Soukatchoff, J.P. Tisot, J.P. Piguet, Stability analysis of lateritic waste deposits. Eng. Geol. 68, 189–199 (2003). https://doi.org/10.1016/S0013-7952(02)00227-2

    Article  Google Scholar 

  93. C. Ouyang, K. Zhou, Q. Xu, J. Yin, D. Peng, D. Wang, W. Li, Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen. China. Landslides 14, 705–718 (2017). https://doi.org/10.1007/s10346-016-0764-9

    Article  Google Scholar 

  94. B. Ozdemir, M. Kumral, A system-wide approach to minimize the operational cost of bench production in open-cast mining operations. Int. J. Coal Sci. Technol. 6(1), 84–94 (2019)

    Article  Google Scholar 

  95. W.G. Pariseau, S.C. Schmelter, A.K. Sheik, Mine slope stability analysis by coupled finite element modeling. Int. J. Rock. Mech. Mining Sci. 34(3–4), 1–17 (1997). https://doi.org/10.1016/S1365-1609(97)00260-8

    Article  Google Scholar 

  96. D.M. Pascoe, R.J. Pine, J.H. Howe, An extension of probabilistic slope stability analysis of china clay deposits using geostatistics. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 15, 193–197 (1998). https://doi.org/10.1144/GSL.ENG.1998.015.01.20

    Article  Google Scholar 

  97. S.C. Pasternack, S. Gao, Numerical methods in the stability analysis of slopes. Comput. Struct. 30(3), 573–579 (1988). https://doi.org/10.1016/0045-7949(88)90291-X

    Article  Google Scholar 

  98. M. Pastor, M. Quecedo, J.A. Ferna´ndezMerodo, M.I. Herrores, E. Gonza´lez, P. Mira, Modelling tailings dams and mine waste dumps failures. Geotechnique 52(8), 579–591 (2002) https://doi.org/10.1680/geot.2002.52.8.579.

  99. C. Peng, D. Ji, L. Zhao, F. Ren, Study on limit height and its stability of open-pit dump bases on basement bearing mechanism. Appl. Mech. Mater. 405–408, 177–181 (2013)

    Article  Google Scholar 

  100. Piteau Associates Engineering Ltd. (PAEL), 1991. Investigation and design of mine dumps: interim guidelines. Report to British Columbia Ministry of Energy, Mines and Petroleum Resources 1991. https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/mineral-exploration-mining/documents/mineral-titles/permitting/geotechnical-information/1991-05-00_minedrockoverburdenpile_investigationdesignmanual.pdf. Accessed 31 January 2019

  101. B. Poulsen, M. Khanal, A.M. Rao, D. Adhikary, R. Balusu, Mine overburden dump failure: a case study. Geotech. Geol. Eng. 32(2), 297–309 (2014). https://doi.org/10.1007/s10706-013-9714-7

    Article  Google Scholar 

  102. Provisional Coal Statistics (2018–19), Coal Directory of India, Government of India, Ministry of Coal, Coal Controller’s Organisation Kolkata 2019. http://www.coalcontroller.gov.in/writereaddata/files/download/provisionalcoalstat/ProvisionalCoalStat2018-19.pdf. Accessed 28 October 2020

  103. H. Rahardjo, T.H. Ong, R.B. Rezaur, E.C. Leong, Factors controlling instability of homogeneous soil slopes under rainfall. J. Geotech. Geoenviron. Eng. 133, 1532–1543 (2007). https://doi.org/10.1061/(asce)1090-0241(2007)133:12(1532)

    Article  Google Scholar 

  104. A. Rahimi, H. Rahardjo, E.C. Leong, Effect of hydraulic properties of soil on rainfall-induced slope failure. Comput. Geotech. 114(3), 135–143 (2010)

    Google Scholar 

  105. R. Rai, S. Kalita, T. Gupta, B.K. Shrivastva, Sensitivity analysis of internal dragline dump stability: finite element analysis. Geotech. Geol. Eng. 30, 1397–1404 (2012). https://doi.org/10.1007/s10706-012-9541-2

    Article  Google Scholar 

  106. Reports and Data. Globe Newswire 2019. https://www.globenewswire.com/news-release/2019/05/28/1853569/0/en/Surface-Mining-Market-to-Reach-USD-32-92-Billion-By-2026-Reports-And-Data.html. Accessed 28 October 2020

  107. B.G. Richards, M.A. Coulthard, C.T. Toh, Analysis of Slope Stability at Goonyella Mine. Can. Geotech. J. 18(2), 179–194 (1981). https://doi:https://doi.org/10.1139/t81-023.

  108. A. Roberson, Mine waste disposal: an update on geotechnical and geohydrological aspects. In: Proceedings of the Steffen, Robertson & Kirsten, Vancouver, Canada (1985)

  109. I. Satyanarayana, G. Budi, P. Sen, A.K. Sinha, Stability evaluation of highwall slope in an opencast coal mine - A case study. Model Meas. Control C 78, 253–273 (2017) https://doi.org/10.18280/mmc_c.780301.

  110. J.H. Schmertmann, Estimating slope stability reduction due to rain infiltration mounding. J. Geotech. Geoenviron. Eng. 132(9), 1219–1228 (2006)

    Article  Google Scholar 

  111. S. Sengupta, I. Roy, Study of internal dump stability of dudhichua open cast project, northern coalfields limited, India. J. Inst. Eng. India Ser. D 96(1), 67–75 (2015). https://doi.org/10.1007/s40033-014-0061-5

    Article  Google Scholar 

  112. R.A. Shakesby, J.R. Whitlow, Failure of a mine waste dump in Zimbabwe: causes and consequences. Environ. Geol. Water Sci. 18(2), 143–153 (1991)

    Article  Google Scholar 

  113. H. Sharafi, Y.S. Maleki, Evaluation of the lateral displacements of a sandy slope reinforced by a row of floating piles: a numerical-experimental approach. Soil Dyn. Earth. Eng. 122, 148–170 (2019). https://doi.org/10.1016/j.soildyn.2019.04.007

    Article  Google Scholar 

  114. R.J. Sheets, E.E. Bates, Gold Quarry North Waste Rock Facility slide investigation and stabilization. In: Proceedings of the 12th Int. Conf. of Tailings Mine Waste ’08, 409–421 (2008) https://doi.org/10.1201/9780203882306.ch39.

  115. G. Shiyou, Z. Wei, S. Xuyang et al., Mechanical properties of material in a mine dump at the Shengli # 1 surface coal mine. China. Int. J. Min. Sci. Technol. 27, 545–550 (2017). https://doi.org/10.1016/j.ijmst.2017.03.014

    Article  Google Scholar 

  116. H.J. Siddle, M.D. Wright, J.N. Hutchinson, Rapid failures of colliery spoil heaps in the South Whales coalfield. Q. J. Eng. Geol. 29, 103–132 (1996)

    Article  Google Scholar 

  117. P.K. Singh, M.P. Roy, R.K. Paswan, et al., Effect of production blasts on waste dump stability. In: Proceedings of the 10th Int Symp Rock Fragm by Blasting, 221–229 (2013) https://doi.org/10.1201/b13759-29.

  118. Y. Song, Numerical analysis of the seepage from and stability of a mine waste-dump slope during rainfall. J. Eng. Geol. 25, 57–66 (2015). https://doi.org/10.9720/kseg.2015.1.57

    Article  Google Scholar 

  119. K. Soren, G. Budi, P. Sen, Stability Analysis of Open Pit Slope by Finite Difference Method. Int. J. Res. Eng. Technol. 3(5), 326–334 (2014)

    Article  Google Scholar 

  120. R.C. Speck, S. Huang, E. Kroeger, Large-scale slope movements and their affect on spoil-pile stability in Interior Alaska. Int. J. Surf. Min. Reclamat. 7(4), 161–166 (1993)

    Article  Google Scholar 

  121. E. Spencer, A Method of analysis of the stability of embankments assuming parallel inter-slice forces. Géotechnique 17, 11–26 (1967)

    Article  Google Scholar 

  122. K. Spitz, J. Trudinger, Mining and the Environment: From Ore to Metal (CRC Press, Boca Raton, 2008)

    Book  Google Scholar 

  123. St Barbara Limited, Annual Report 2019. (2019) https://stbarbara.com.au/wp-content/uploads/2019/09/2019.09.13-asx-2019-annual-report-1.pdf. Accessed 14 June 2020

  124. E. Steiakakis, K. Kavouridis, D. Monopolis, Large scale failure of the external waste dump at the “South Field” lignite mine. Northern Greece. Eng. Geol. 104, 269–279 (2009). https://doi.org/10.1016/j.enggeo.2008.11.008

    Article  Google Scholar 

  125. B. Stuckert, J. Balfour, D. Fawcett, P. Sheehan, B. Das, Study of the dynamic stability of mine waste dumps. CIM. Bull. 82(927), 55–60 (1989)

    Google Scholar 

  126. W.X. Su, H.D.S. Miller, Waste pile stability and debris flow formation. In: Proceedings of the 35th U.S. Symposium on Rock Mechanics (USRMS) Reno, Nevada (1995)

  127. C. Sun, J. Chai, B. Ma, T. Luo, Y. Gao, H. Qiu, Stability charts for pseudostatic stability analysis of 3d homogeneous soil slopes using strength reduction finite element method. Adv. Civ. Eng. (2019). https://doi.org/10.1155/2019/6025698

    Article  Google Scholar 

  128. S. Sun, C., Fan, Z., Li, et al., Stress fields evolution law in the piling-up process of waste dump of huge soft hill base. Met. Mine 8, 36–38 (2010)

  129. C.A. Tang, W.T. Yang, Y.F. Fu, X.H. Xu, A new approach to numerical method of modelling geological processes and rock engineering problems—continuum to discontinuum and linearity to nonlinearity. Eng. Geol. 49(3–4), 207–214 (1998)

    Article  Google Scholar 

  130. M.B. Teixeira, C.D. Nogueira, W.O. Filho, Numerical simulation of hillside mine waste dump construction. Rem Revista Escola de Minas 65(4), 553–559 (2012). https://doi.org/10.1590/S0370-44672012000400018

    Article  Google Scholar 

  131. I. Tsaparas, H. Rahardjo, D.G. Toll, Controlling parameters for rainfall-induced landslides. Comput. Geotech. 29, 1–27 (2002)

    Article  Google Scholar 

  132. F. Tschuchnigg, H.F. Schweiger, S.W. Sloan, A.V. Lyamin, I. Raissakis, Comparison of finite-element limit analysis and strength reduction techniques. Geotechnique 65(4), 249–257 (2015). https://doi.org/10.1680/geot.14.P.022

    Article  Google Scholar 

  133. K. Ugai, D. Leshchinsky, Three-dimensional limit equilibrium and finite element analyses: a comparison of results. Soils Found. 35(4), 1–7 (1995)

    Article  Google Scholar 

  134. R. Ulusay, F. Arikan, M.F. Yoleri, D. Çaǧlan, Engineering geological characterization of coal mine waste material and an evaluation in the context of back-analysis of spoil pile instabilities in a strip mine. SW Turkey. Eng. Geol. 40, 77–101 (1995). https://doi.org/10.1016/0013-7952(95)00042-9

    Article  Google Scholar 

  135. R. Ulusay, D. Çaglan, F. ArIkan, M.F. Yoleri, Characteristics of biplanar wedge spoil pile instabilities and methods to improve stability. Can. Geotech. J. 33, 58–79 (1996)

    Article  Google Scholar 

  136. O.P. Upadhyay, D.K. Sharma, D.P. Singh, Factors affecting stability of waste dumps in mines. Int. J. Surf. Min. Reclam. 4(3), 95–99 (1990)

    Article  Google Scholar 

  137. D. Van Zyl, Mine waste disposal, in Geotechnical Practice for Waste Disposal. ed. by D.E. Daniel (Chapman & Hall, London, 1993), pp. 269–286

    Google Scholar 

  138. D.X. Wang, Analysis and control measures of slope stability in Zhahanao’er open-pit mine stope and dump. Opencast Min. Technol. 8, 1–3 (2015)

    Google Scholar 

  139. G. Wang, X. Kong, Y. Gu, C. Yang, Research on slope stability analysis of super-high dumping site based on cellular automaton. Procedia Eng. 12, 248–253 (2011). https://doi.org/10.1016/j.proeng.2011.05.039

    Article  Google Scholar 

  140. J. Wang, Study on failure mechanism of the external waste dump with water-immersed basement and its control technology. Dissertation, China University of Mining and Technology, Beijing, China (2015b)

  141. J. Wang, C. Chen, Stability analysis of slope at a disused waste dump by two-wedge model. Int. J. Mining Reclam. Environ. 0930, 1–14 (2016). https://doi.org/10.1080/17480930.2016.1270498

    Article  Google Scholar 

  142. J.C. Wang, S.W. Sun, C. Chen, Geo-mechanical model experiment research of dumping site on loess basement. J. China Coal Soc. 39(5), 861–867 (2014)

    Google Scholar 

  143. Y. Wang, S. Sun, L. Liu, Mechanism, stability and remediation of a large scale external waste dump in China. Geotech. Geol. Eng. 37, 5147–5166 (2019)

    Article  Google Scholar 

  144. Z. Wang, B. Liu, Y. Han, J. Wang, B. Yao, P. Zhang, Stability of inner dump slope and analytical solution based on circular failure: Illustrated with a case study. Comput. Geotech. 117 (2020) https://doi.org/10.1016/j.compgeo.2019.103241

  145. S.E. Wati, T. Hastuti, S. Wijojo, F. Pinem, Landslide susceptibility mapping with heuristic approach in mountainous area. A case study in Tawangmangu sub district, central java, Indonesia. Int. Arch. Photo. RS. Spat. Inf. Sci. 38(8), 248–253 (2010)

  146. W.B. Wei, Y.M. Cheng, Stability analysis of slope with water flow by strength reduction method. Soils Found. 50(1), 83–92 (2010)

    Article  Google Scholar 

  147. J. Xiao, W. Gong, R. James et al., Probabilistic seismic stability analysis of slope at a given site in a specified exposure time. Eng. Geol. 212, 53–62 (2016)

    Article  Google Scholar 

  148. H. Xing, L. Liu, Y. Luo, Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability. Geomech. Eng. 18(4), 353–362 (2019) https://doi.org/10.12989/GAE.2019.18.4.353.

  149. H. Yang, R. Adler, G. Huffman, Use of satellite remote sensing in the mapping of global landslide susceptibility. Nat. Hazards 43(2), 245–256 (2007). https://doi.org/10.1007/s11069-006-9104-z

    Article  Google Scholar 

  150. Y. Yang, G. Sun, H. Zheng, Stability analysis of soil-rock-mixture slopes using the numerical manifold method. Eng. Anal. Bound. Elem. 109, 153–160 (2019). https://doi.org/10.1016/j.enganabound.2019.09.020

    Article  MathSciNet  MATH  Google Scholar 

  151. Y. Yang, G. Sun, H. Zheng, Y. Qi, Investigation of the sequential excavation of a soil-rock-mixture slope using the numerical manifold method. Eng. Geol. 256, 93–109 (2019). https://doi.org/10.1016/j.enggeo.2019.05.005

    Article  Google Scholar 

  152. Y. Yang, G. Sun, H. Zheng, C. Yan, An improved numerical manifold method with multiple layers of mathematical cover systems for the stability analysis of soil-rock-mixture slopes. Eng. Geol. 264 (2020). https://doi.org/10.1016/j.enggeo.2019.105373.

  153. H. Ye, W. Li, Dynamic stability analysis and forecast of surface mine dump. Open J. Saf. Sci. Technol. 2, 55–61 (2012). https://doi.org/10.4236/ojsst.2012.22008

    Article  Google Scholar 

  154. M. Yellishetty, W.J. Darlington, Effects of monsoonal rainfall on waste dump stability and respective geo-environmental issues: a case study. Environ. Earth Sci. 1169–1177 (2011). https://doi.org/10.1007/s12665-010-0791-0.

  155. S. Yubonchit, A. Chinkulkijniwat, S. Horpibulsuk et al., Influence factors involving rainfall-induced shallow slope failure-numerical study. Int. J. Geomech (2016). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000865

    Article  Google Scholar 

  156. I.E. Zevgolis, Geotechnical characterization of mining rock waste dumps in central Evia. Greece. Environ. Earth Sci. 77, 566 (2018). https://doi.org/10.1007/s12665-018-7743-5

    Article  Google Scholar 

  157. I.E. Zevgolis, A.V. Deliveris, N.C. Koukouzas, Slope failure incidents and other stability concerns in surface lignite mines in Greece. J. Sustain. Min. 18, 182–197 (2019). https://doi.org/10.1016/j.jsm.2019.07.001

    Article  Google Scholar 

  158. L. Zhan, Z. Zhang, Y. Chen et al., The 2015 Shenzhen catastrophic landslide in a construction waste dump: reconstitution of dump structure and failure mechanisms via geotechnical investigations. Eng. Geol. 238, 15–26 (2018). https://doi.org/10.1016/j.enggeo.2018.02.019

    Article  Google Scholar 

  159. D. Zhang, N. Inoue, T. Sasaoka et al., Study on formation mechanism of dumping piles on dumping area stability. Open J. Geol. 4(4), 161–175 (2014). https://doi.org/10.4236/ojg.2014.44012

    Article  Google Scholar 

  160. Y. Zhang, G. Chen, L. Zheng, Y. Li, X. Zhuang, Effects of geometries on three-dimensional slope stability. Can. Geotech. J. 50 (2013). https://doi.org/10.1139/cgj-2012-0279.

  161. X. Zhao, X. Gao, D. Li, The stability analysis of nantong coal mine waste dump, chongqing and prevention measures. Appl. Mech. Mater. 204–208, 3526–3531 (2012)

    Article  Google Scholar 

  162. H. Zheng, G. Sun, D. Liu, A practical procedure for searching critical slip surfaces of slopes based on the strength reduction technique. Comput. Geotech. 36(1–2), 1–5 (2009). https://doi.org/10.1016/j.compgeo.2008.06.002

    Article  Google Scholar 

  163. T. Zhigang, Z. Chun, H. Manchao et al., Research on the safe mining depth of anti-dip bedding slope in Changshanhao Mine. Geomech. Geophys. Geo-energ. Geo-resour. 6, 1–20 (2020). https://doi.org/10.1007/s40948-020-00159-9

    Article  Google Scholar 

  164. T. Zhigang, Z. Chun, W. Yong, W. Jiamin, H. Manchao, Z. Bo, Research on Stability of an Open-Pit Mine Dump with Fiber Optic Monitoring. Geofluids, 1–20 (2018). https://doi.org/10.1155/2018/9631706.

  165. A. Zhou, X. Huang, N. Li, P. Jiang, W. Wang, A Monte Carlo Approach to Estimate the Stability of Soil–Rock Slopes Considering the Non-Uniformity of Materials. Symmetry 12 (2020). https://doi.org/10.3390/sym12040590.

  166. H. Zhu, Z. Wang, B. Shi, J.K. Wong, Feasibility study of strain based stability evaluation of locally loaded slopes: insights from physical and numerical modeling. Eng. Geol. 208, 39–50 (2016). https://doi.org/10.1016/j.enggeo.2016.04.019

    Article  Google Scholar 

  167. P. Zou, X. Zhao, Z. Meng, A. Li, Z. Liu, W. Hu, Sample Rocks Tests and Slope Stability Analysis of a Mine Waste Dump. Adv. Civ. Eng., 1–17 (2018) https://doi.org/10.1155/2018/6835709

Download references

Acknowledgements

This research work was supported by the Department of Mining Engineering of Indian Institute of Technology (Banaras Hindu University), Varanasi—221005, India.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, G., Sharma, S.K., Singh, G.S.P. et al. Numerical Modelling-Based Stability Analysis of Waste Dump Slope Structures in Open-Pit Mines-A Review. J. Inst. Eng. India Ser. D 102, 589–601 (2021). https://doi.org/10.1007/s40033-021-00277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-021-00277-y

Keywords

Navigation