Replication of the Al/Ti Metal Intermetallic Laminates Using LS Dyna for Tungsten Alloy Penetrator Application

Abstract

In this study, the simulation of the Al/Al3Ti metal intermetallic laminates was done using finite element analysis software LS Dyna, under high-speed impact loading using a tungsten projectile. These MILs were processed by diffusion bonding under the condition (575 °C, 4 MPa and 6 h), which was further annealed for 48 h. In LS Dyna, the projectile was fired at different velocities such as 900 m/s, 1200 m/s and 2000 m/s to varying angles of 0°, 30° and 60°. In each case, the penetration depth of the projectile and the number of layers damaged were found to understand the resistance offered by the MILs to the projectile. The time versus projectile penetration depth graph and the corresponding stress distribution in the MILs in each case were plotted to understand the extent of damage caused. Further, the velocity, energy and crack density distribution graphs were extracted from LS Dyna to understand in detail the journey of the projectile through the MIL. It was found that greater the angle of firing, the lesser the penetration depth of the projectile but at the cost of more damage to the layers up to which the projectile penetrated through the MIL.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    H. Wang, T. Harrington, C. Zhu, K.S. Vecchio, Acta Mater. (2019). https://doi.org/10.1016/j.actamat.2019.06.039

    Article  Google Scholar 

  2. 2.

    N. Thiyaneshwaran, K. Sivaprasad, B. Ravisankar, Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-016-9382-x

    Article  Google Scholar 

  3. 3.

    Y. Sun, J. Chen, F. Ma, K. Ameyama, W. Xiao, C. Ma, Mater. Charact. (2015). https://doi.org/10.1016/j.matchar.2015.02.018

    Article  Google Scholar 

  4. 4.

    M. Grujicic, J.S. Snipes, S. Ramaswami, AIMS Mater. Sci. (2016). https://doi.org/10.3934/matersci.2016.3.686

    Article  Google Scholar 

  5. 5.

    Y.D. Lipatnikova, A.N. Solov’ev, V.A. Starenchenko, N.N. Belov, Y.V. Solov’eva, Russ. Phys. J. (2019). https://doi.org/10.1007/s11182-019-01659-2

    Article  Google Scholar 

  6. 6.

    M. Yuan, Z. Wang, Y. Yao, L. Li, Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102706

    Article  Google Scholar 

  7. 7.

    Y. Chang, Z. Wang, X. Li, Z. Leng, C. Guo, Z. Niu, F. Jiang, Intermetallics (2019). https://doi.org/10.1016/j.intermet.2019.106544

    Article  Google Scholar 

  8. 8.

    Y. Cao, S. Zhu, C. Guo, K.S. Vecchio, F. Jiang, Appl. Compos. Mater. (2014). https://doi.org/10.1007/s10443-014-9416-1

    Article  Google Scholar 

  9. 9.

    F. Xueling, Y. Meini, Q. Qiang, Rare Met. (2018). https://doi.org/10.1016/S1875-5372(18)30197-8

    Article  Google Scholar 

  10. 10.

    T. Li, F. Grignon, D.J. Benson, K.S. Vecchio, E.A. Olevsky, F. Jiang, A. Rohatgi, R.B. Schwarz, M.A. Meyers, Mater. Sci. Eng. A (2004). https://doi.org/10.1016/j.msea.2003.09.074

    Article  Google Scholar 

  11. 11.

    T. Li, F. Jiang, E.A. Olevsky, K.S. Vecchio, M.A. Meyers, Mater. Sci. Eng. A (2007). https://doi.org/10.1016/j.msea.2006.05.037

    Article  Google Scholar 

  12. 12.

    R.D. Price, F. Jiang, R.M. Kulin, K.S. Vecchio, Mater. Sci. Eng. A (2011). https://doi.org/10.1016/j.msea.2010.12.087

    Article  Google Scholar 

  13. 13.

    X.B. Li, Y. Yang, Y.S. Xu, G.Y. Zu, Rare Met. (2018). https://doi.org/10.1007/s12598-018-0998-x

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Sivaprasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blessto, B., Nair, S., Sivaprasad, K. et al. Replication of the Al/Ti Metal Intermetallic Laminates Using LS Dyna for Tungsten Alloy Penetrator Application. J. Inst. Eng. India Ser. D (2020). https://doi.org/10.1007/s40033-020-00208-3

Download citation

Keywords

  • Metal intermetallic laminates
  • LS Dyna
  • Finite element analysis
  • Penetration depth
  • Johnson–Cook (JC) model