Skip to main content
Log in

Room-Temperature Erosion Behaviour of Nb-Stabilized 27Cr–7Ni–Mo–W–N Cast Hyper-Duplex Stainless Steel (Nb + CD3MWN - 7A)

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Niobium addition to base alloy significantly reduces the formation of deleterious phases, in particular, sigma phase when the material is sensitized at 900 °C. In this paper, hyper-duplex stainless steel with 0.47% of Niobium (Nb + CD3MWN - 7A) was casted using induction melting furnace and then heat-treated under two different heat treatment temperatures of 1160 °C and 900 °C to explore the properties such as microstructure and hardness for further study. The erosion test was carried out in air-jet erosion tester at room temperature with different erodent velocities. The study was done with a constant impact angle of 45°. Microstructure analysis was carried on two different heat-treated samples as well as on eroded samples using scanning electron microscope coupled with energy-dispersive analysis spectroscopy to confirm the presence Niobium carbide precipitation in sensitized sample at grain boundaries. Erosion test results showed that erosion rate is lower in sensitized sample when compared to solutionized sample because of their higher hardness in sensitized sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.H. Chen, J.R. Yang, Mater. Sci. Eng. A A338, 166–181 (2002)

    Article  Google Scholar 

  2. V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, S. Sundaresan, Mater. Sci. Eng. A A358, 9–16 (2003)

    Article  Google Scholar 

  3. D.E. Nelson, W.A. Baeslack III, J.C. Lippold, Mater. Charact. 39, 467–477 (1997)

    Article  Google Scholar 

  4. K. Ravindranath, S.N. Mailhotra, Corros. Sci. 37(1), 121–132 (1995)

    Article  Google Scholar 

  5. R.D. Kane, Adv. Mater. Process. 144(1), 16–20 (1993)

    Google Scholar 

  6. J.O. Nilsson, Mater. Sci. Technol. 8, 85–700 (1992)

    Article  Google Scholar 

  7. P.J. Antony, R.K. Singh Raman, R. Mohanram, P. Kumar, R. Raman, Corros. Sci. 50, 1858–1864 (2008)

    Article  Google Scholar 

  8. V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, S. Sun daresan, Mater. Sci. Eng. A A3, 9–16 (2003)

    Article  Google Scholar 

  9. J.O. Nilson, P. Kangas, T. Karlsson, A. Wilson, Metall. Mater. Trans. A 31, 35–45 (2000)

    Article  Google Scholar 

  10. M. Martins, L.C. Casteletti, Mater. Charact. 60, 792–795 (2009)

    Article  Google Scholar 

  11. S.K. Ghosh, S. Mondal, Mater. Charact. 59, 1776–1783 (2008)

    Article  Google Scholar 

  12. N. Lopez, M. Cid, M. Puiggali, Corros. Sci. 41, 1615–1631 (1999)

    Article  Google Scholar 

  13. J.O. Nilsson, A. Wilson, Mater. Sci. Technol. 9, 545–554 (1993)

    Article  Google Scholar 

  14. B. Deng, Z. Wang, Y. Jiang, T. Sun, J. Xu, J. Li, Corros. Sci. 51, 2969–2975 (2009)

    Article  Google Scholar 

  15. J.W. Simmon, Scr. Metall. Mater. 32, 265–270 (1995)

    Article  Google Scholar 

  16. Z.Z. Yuan, Q.X. Dai, X.N. Chen, K.M. Chen, Mater. Charact. 58, 87–91 (2007)

    Article  Google Scholar 

  17. A.J. Strutt, G.W. Lorimer, C.V. Roscoe, K.J. Gradwell, Proc. Duplex Stainl. Steels 86, 310 (1986)

    Google Scholar 

  18. D.Y. Kobayashi, S. Wolynec, Mater. Res. 4, 239–247 (1999)

    Article  Google Scholar 

  19. C.S. Huang, C.C. Shin, Mater. Sci. Eng. A 402, 66–75 (2005)

    Article  Google Scholar 

  20. K.M. Lee, H.S. Cho, D.C. Choi, J. Alloys Compd. 285, 156–161 (1999)

    Article  Google Scholar 

  21. T.H. Chen, J.R. Yang, Mater. Sci. Eng. A 311, 28–41 (2001)

    Article  Google Scholar 

  22. K. Premachandra, M.B. Cortie, R.H. Eric, Mater. Sci. Technol. 8, 437–442 (1992)

    Article  Google Scholar 

  23. S.H. Jeon, S.T. Kim, I.S. Lee, J.S. Kim, K.T. Kim, Y.S. Park, Corros. Sci. 66, 217–224 (2013)

    Article  Google Scholar 

  24. A.S. Zubchenko, Mater. Sci. Heat Treat. 24, 274–276 (1982)

    Article  Google Scholar 

  25. E.O. Hall, S.H. Algie, Metall. Rev. 11, 61–88 (1966)

    Google Scholar 

  26. S.H. Jeon, S.T. Kim, I.S. Lee, J.S. Kim, K.T. Kim, Y.S. Park, J. Alloys Compd. 544, 166–172 (2012)

    Article  Google Scholar 

  27. D.Y. Lin, T.C. Chang, G.L. Liu, Scr. Mater. 49, 855–860 (2003)

    Article  Google Scholar 

  28. W. Xiaofeng, C. Weiqing, J. Rare Earths 28, 295–300 (2010)

    Google Scholar 

  29. M. Patel, D. Patel, S. Sekar, P.B. Tailor, P.V. Ramana, Procedia Technol. 23, 288–295 (2016)

    Article  Google Scholar 

  30. R. Bellman Jr., Wear, 70, 1–27 (1981)

  31. B. Bhusan, Introduction to Tribology, Technology & Engineering, pp. John Wiley & Sons, 330–332 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rajkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, M., Kumaresh Babu, S.P., Vallimanalan, A. et al. Room-Temperature Erosion Behaviour of Nb-Stabilized 27Cr–7Ni–Mo–W–N Cast Hyper-Duplex Stainless Steel (Nb + CD3MWN - 7A). J. Inst. Eng. India Ser. D 100, 83–90 (2019). https://doi.org/10.1007/s40033-018-0171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-018-0171-6

Keywords

Navigation