Skip to main content
Log in

Strain Hardening Behaviour and Its Effect on Properties of ZrB2 Reinforced Al Composite Prepared by Powder Metallurgy Technique

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Strain hardening behaviour has significant effect on altering the properties of materials. In the present study, Al–ZrB2 metal matrix composites are made through powder metallurgy route. Incremental weight percentage (wt%) of ZrB2 (0, 2, 4 and 6 wt%) are added to Aluminium matrix to produce different composites. The homogenous powder mixture is compacted and pressurelessly sintered. Sintering of composites is performed over a range of 450–575 °C. The optimized sintered condition is observed at 550 °C for 1 h in controlled atmosphere (argon gas flow). The sintered compacts are strained in incremental steps in different levels up to failure. A visible crack on the bulge of the powder preform is considered as the failure. Composites are strain hardened up to failure. To evaluate the effect of temperature on strain hardening, strain hardening is carried out at different temperatures. Composites are densified with the extent of straining and hardness increases with the increase of strain. Hardness increase with the increase in temperature is maintained during strain hardening. To evaluate the corrosion behaviour of Al–ZrB2 composite, potentiodynamic polarization study are performed on the strained composites. Corrosion rate decrease with the extent of straining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Ezhil Vannan, S. Paul Vizhian, Microstructure and mechanical properties of as cast aluminum alloy 7075/Basalt dispersed metal matrix composites. J. Miner. Mater. Charact. Eng. 2, 182–193 (2014)

    Google Scholar 

  2. D. Miracle, Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005)

    Article  Google Scholar 

  3. A. Evans, C. Marchi, A. Mortensen, Metal Matrix Composites in Industry: An Introduction and a Survey, vol. 4 (Kluwer Academic Publisher, Dordrecht, 2003), pp. 978–1007

    Book  Google Scholar 

  4. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites. J. Mater. Sci. 26, 1137–1156 (1991)

    Article  Google Scholar 

  5. T.W. Chou, A. Kelly, A. Okurat, Composites de Matrices en Métal Renforcés aux Fibres. Composites 16, 183–184 (1985)

    Article  Google Scholar 

  6. A. Kelly, S. Fishman, A. Dhingra, Metal matrix composite, a review, in Proceeding International Symposium on Advances in Cast Reinforced Metal Composite, Chicago

  7. ASM Handbook, Casting, Vol. 15, ASM International (1996)

  8. S. Muniraj, P. Senthil Kumar, Experimental analysis of compressive stress-strain rates and mechanical properites of Al 6061 and Al 6061–SiC. IJLTET 6, 393–397 (2016)

    Google Scholar 

  9. A. Bhandakkar, R.C. Prasad, S.M.L. Sastry, Elastic plastic fracture toughness of aluminium alloy AA6061 flyash composites. Adv. Mat. Lett. 5(9), 525–530 (2014)

    Article  Google Scholar 

  10. C. Neelima Devi, V. Mahesh, N. Selvaraj, Mechanical characterization of aluminium silicon carbide composite. Int. J. Appl. Eng. Res. 1(4), 793–799 (2011)

    Google Scholar 

  11. S. Madhusudan, Mohammed M.M. Sarcar, N.B.R.M. Rao, Mechanical properties of Aluminium–Copper(p) composite metallic materials. J. Appl. Res. Technol. 14, 293–299 (2016)

    Article  Google Scholar 

  12. X. Run, G. Fan, Z. Tan, G. Ji, C. Chen, B. Beausir, D.-B. Xiong, Q. Guo, C. Guo, Z. Li, D. Zhang, Back stress in strain hardening of carbon nanotube/aluminum composites. Mater. Res. Lett. 6(2), 113–120 (2018)

    Article  Google Scholar 

  13. D.R. Kumar, R. Narayanasamy, C. Loganathan, Effect of glass and SiC in aluminum matrix on workability and strain hardening behavior of powder metallurgy hybrid composites. Mater. Des. 34, 120–136 (2012)

    Article  Google Scholar 

  14. D.R. Kumar, R. Narayanasamy, C. Loganathan, Effect of glass in aluminum matrix on workability and strain hardening behavior of powder metallurgy composite. Mater. Des. 32, 2413–2422 (2011)

    Article  Google Scholar 

  15. Di Zhang, Kenjiro Sugio, Kazuyuki Sakai, Hiroshi Fukushima, Osamu Yanagisawa, Effect of volume fraction on the flow behavior of Al–SiC composites considering the spatial distribution of delaminated particles. Mater. Trans. 49(3), 661–670 (2008)

    Article  Google Scholar 

  16. Z. Wang, J. Tan, S. Scudino, B.A. Sun, R.T. Qu, J. He, K.G. Prashanth, W.W. Zhang, Y.Y. Li, J. Eckert, Mechanical behavior of Al-based matrix composites reinforced with Mg58Cu28.5Gd11Ag2.5 metallic glasses. Adv. Powder Technol. 25, 635–639 (2014)

    Article  Google Scholar 

  17. S. Narayan, A. Rajeshkannan, Studies on formability of sintered aluminum composites during hot deformation using strain hardening parameters. J. Mater. Res. Technol. 6(2), 101–107 (2017)

    Article  Google Scholar 

  18. D.W. Wolla, M.J. Davidson, A.K. Khanra, Studies on the formability of powder metallurgical aluminum–copper composite. Mater. Des. 59, 151–159 (2014)

    Article  Google Scholar 

  19. A. Hassani, E. Bagherpour, F. Qods, Influence of pores on workability of porous Al/SiC composites fabricated through powder metallurgy + mechanical alloying. J. Alloy. Compd. 591, 132–142 (2014)

    Article  Google Scholar 

  20. J. Appa Rao, J. Babu Rao, S. Kamaluddin, M.M.M. Sarcar, N.R.M.R. Bhargava, Studies on the workability limits of pure copper using machine vision system and its finite element analysis. Mater. Des. 30, 2143–2151 (2009)

    Article  Google Scholar 

  21. S. Gadakary, R. Veerababu, A.K. Khanra, Workability studies on Cu–TiB2 powder preforms during cold upsetting. Mater. Technol. 50(3), 373–380 (2016)

    Google Scholar 

  22. S.K. Mishra, S.K. Das, L.C. Pathak, Sintering behavior of self-propagating high temperature synthesised ZrB2–Al2O3 composite powder. Mater. Sci. Eng. A 426, 229–234 (2006)

    Article  Google Scholar 

  23. S.K. Mishra, S.K. Das, V. Sherbacov, Fabrication of Al2O3–ZrB2 in situ composite by SHS dynamic compaction: a novel approach. Compos. Sci. Technol. 67, 2447–2453 (2007)

    Article  Google Scholar 

  24. E. Ghasali, A. Pakseresht, F. Safari-Kooshali, M. Agheli, T. Ebadzadeh, Investigation on microstructure and mechanical behavior of Al–ZrB2 composite prepared by microwave and spark plasma sintering. Mater. Sci. Eng., A 627, 27–30 (2015)

    Article  Google Scholar 

  25. D. Zhao, X. Ilu, Y. Liu, X. Bian, In-situ preparation of Al matrix composites reinforced by TiB2 particles and sub-micron ZrB2. J. Mater. Sci. 40, 4365–4368 (2005)

    Article  Google Scholar 

  26. J.B. Foagagnolo, M.H. Robert, E.M. Ruiz-Navas, J.M. Torralba, 6061 Al reinforced with zirconium diboride particles processed by conventional powder metallurgy and mechanical alloying. J. Mater. Sci. 39, 127–132 (2004)

    Article  Google Scholar 

  27. A.K. Khanra, Awareness of materials engineering: an Indian culture perspective. J. Mater. Edu. 39(5–6), 209–222 (2017)

    Google Scholar 

  28. P.D. Reena Kumari, Jagannath Nayak, A. Nityananda Shetty, Corrosion behavior of 6061/Al–15 vol. pct. SiC(p) composite and the base alloy in sodium hydroxide solution. Arab. J. Chem. 9, 1144–1154 (2016)

    Article  Google Scholar 

  29. D. Prabhu, P. Rao, Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media. Arab. J. Chem. 10, 2234–2244 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Metallurgical and Materials Engineering Department, NIT Warangal which helped in characterization of composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Mahesh Yadav Kaku.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaku, S.M.Y., Khanra, A.K. & Davidson, M.J. Strain Hardening Behaviour and Its Effect on Properties of ZrB2 Reinforced Al Composite Prepared by Powder Metallurgy Technique. J. Inst. Eng. India Ser. D 99, 115–124 (2018). https://doi.org/10.1007/s40033-018-0155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-018-0155-6

Keywords

Navigation