Skip to main content
Log in

Effect of Precipitation Morphology on the Second Harmonic Generation of Ultrasonic Wave During Tempering in P92 Steel

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript


This paper reports the generation of second harmonic of ultrasound wave and the variation of its amplitude with the precipitation morphology in P92 steel. P92 steel samples were normalized at 1075 °C and tempered in a range of 715–835 °C at a step of 30 °C to study the effect of nucleation and growth of precipitates on the amplitude of second harmonic of ultrasound wave. It has been observed that the non linear ultrasonic (NLU) parameter which is defined as the ratio of the amplitude of second harmonic to the square of the amplitude of the transmitted signal frequency increases with the nucleation and growth of precipitates. Whereas when the growth of precipitate is restricted and fine secondary precipitates start to nucleate, it decreases. The maximum of NLU parameter corresponds to the optimum tempering temperature for the studied material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others


  1. H. Naoi, M. Ohgami, S. Araki, T. Ogawa, H. Yasuda, H. Masumoto, T. Fujita, Nippon Steel Tech. Report 50, July (1991), p. 7–13

  2. ASTM standards A 213/A 213M–03b, Standard specification for seamless ferritic and austenitic alloy-steel boiler, superheater, and heat-exchanger tubes

  3. D.R. Barbadikar, G.S. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, M. Nandagopal, M.D. Mathew, Effect of normalizing and tempering temperatures on microstructure and mechanical properties of P92 steel. J. Press. Vessel Pip. 132–133, 97–105 (2015)

    Article  Google Scholar 

  4. P.J. Ennis, A. Czyrska-Filemonowicz, Recent advances in creep-resistant steels for power plant applications. Sadhana 28, 709–730 (2003). (Parts 3&4)

    Article  Google Scholar 

  5. S.S. Wang, D.L. Peng, L. Chang, X.D. Hui, Enhanced mechanical properties induced by refined heat treatment for 9Cr–0.5Mo–1.8 W martensitic heat resistant steel. Mater. Des. 50, 174–180 (2013)

    Article  Google Scholar 

  6. D.V. Shtansky, G. Inden, Phase transformation in Fe–Mo–C and Fe–W–C steels—II. Eutectoid reaction of M23C6 carbide decomposition during austenitization. Acta Mater. 45, 2879–2895 (1997)

    Article  Google Scholar 

  7. K.V. Rajkumar, A. Kumar, T. Jayakumar, B. Raj, K.K. Ray, Characterization of aging behavior in M250 grade maraging steel using ultrasonic measurements. Metall. Mater. Trans. A 38(2), 236–243 (2007)

    Article  Google Scholar 

  8. J.M. Pardal, S.S.M. Tavares, M.P. Fonseca Cindra, M.R. da Silva, J.M. Neto, H.F.G. Abreu, Influence of temperature and aging time on hardness and magnetic properties of the maraging steel grade 300. J. Mater. Sci. 42, 2276–2281 (2007)

    Article  Google Scholar 

  9. K.V. Rajkumar, S. Vadhyanathan, A. Kumar, T. Jayakumar, B. Raj, K.K. Ray, Characterization of aging induced microstructural changes in M250 maraging steel using magnetic parameters. J. Magn. Mater. 312(2), 359–365 (2007)

    Article  Google Scholar 

  10. K.V. Rajkumar, B.P.C. Rao, B. Sasi, T. Jayakumar, B. Raj, K.K. Ray, Characterization of aging behavior in M250 grade maraging steel using eddy current non-destructive methodology. Mater. Sci. Eng. A 464, 233–240 (2007)

    Article  Google Scholar 

  11. J. Garcia Martin, J. Gomez-Gil, E. Vazquez Sanchez, Non-destructive techniques based on eddy current testing. Sensors 11, 2525–2565 (2011). doi:10.3390/s110302525

    Article  Google Scholar 

  12. S. Mahadevan, T. Jayakumar, B.P.C. Rao, A. Kumar, K.V. Rajkumar, B. Raj, X-ray diffraction profile analysis for characterizing isothermal aging behavior of M250 grade maraging steel. Metall. Mater. Trans. A 39(8), 1978–1984 (2008)

    Article  Google Scholar 

  13. J.M. Pardal, S.S.M. Tavares, M.P. Cindra Fonseca, H.F.G. Abreu, J.J.M. Silva, Study of the austenite quantification by X-ray diffraction in the 18Ni–Co–Mo–Ti maraging 300 steel. J. Mater. Sci. 41, 2301–2307 (2006)

    Article  Google Scholar 

  14. K.Y. Jhang, K.C. Kim, Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics 37(1), 39–44 (1999)

    Article  Google Scholar 

  15. A. Hikata, C. Elbaum, Generation of ultrasonic second and third harmonics due to dislocations. Phys. Rev. 144, 469–477 (1966)

    Article  Google Scholar 

  16. D.C. Hurley, D. Balzar, P.T. Purtscher, Nonlinear ultrasonic assessment of precipitation hardening in ASTM A710 steel. J. Mater. Res. 15(9), 2036–2042 (2000)

    Article  Google Scholar 

  17. S. Palit Sagar, A.K. Metya, M. Ghosh, S. Siva Prasad, Effect of microstructure on non-linear behavior of ultrasound during low cycle fatigue of pearlitic steels. Mater. Sci. Eng. A 528(6), 2895–2898 (2011)

    Article  Google Scholar 

  18. D.C. Hurley, D. Balzar, P.T. Purtscher, K.W. Hollman, Nonlinear ultrasonic parameter in quenched martensitic steels. J. Appl. Phys. 83(9), 4584–4588 (1998)

    Article  Google Scholar 

  19. A. Hikata, B.B. Chick, C. Elbaum, Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 36, 229–236 (1965)

    Article  Google Scholar 

  20. J.H. Cantrell, W.T. Yost, Effect of precipitate coherency strains on acoustic harmonic generation. Appl. Phys. 81, 2957–2962 (1997)

    Article  Google Scholar 

  21. J.H. Cantrell, W.T. Yost, Rev. Prog. Quant. Non Destruct. Eval. 15, 1361–1371 (1996)

    Article  Google Scholar 

  22. T. Suzuki, A. Hikata, C. Elbaum, Anharmonicity due to glide motion of dislocations. J. Appl. Phys. 35, 2761–2766 (1964)

    Article  MATH  Google Scholar 

  23. A. Metya, M. Ghosh, N. Parida, S. Palit Sagar, Higher harmonic analysis of ultrasonic signal for ageing behavior study of C-250 grade maraging steel. NDT&E Int. 41, 484–489 (2008)

    Article  Google Scholar 

  24. J.H. Cantrell, W.T. Yost, Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation. Appl. Phys. Lett. 77, 1952–1956 (2000)

    Article  Google Scholar 

  25. J.H. Cantrell, X.G. Zhang, Nonlinear acoustic response from precipitate–matrix misfit in a dislocation network. J. Appl. Phys. 84, 5469–5472 (1998)

    Article  Google Scholar 

  26. P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, A. Czyrska-Filemonowicz, Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant. Acta Mater. 45, 4901–4907 (1997)

    Article  Google Scholar 

Download references


The authors are thankful to Director, CSIR-National Metallurgical Laboratory, Jamshedpur, India for his permission to publish the work. The first author is grateful to Council of Scientific and Industrial Research for granting financial support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sarmistha Palit Sagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M.K., Swaminathan, J., Bandyopadhyay, N.R. et al. Effect of Precipitation Morphology on the Second Harmonic Generation of Ultrasonic Wave During Tempering in P92 Steel. J. Inst. Eng. India Ser. D 98, 211–217 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: