An Overview of Manganese Recovery by Hydro and Pyro-Metallurgical Routes


This review comprises of information about the recovery of manganese through leaching and carbothermic reduction routes. In industrial processes, various critical parameters such as ore size, temperature, pressure, gas atmosphere and ore composition etc. affect the reduction or recovery of Mn from ores. Authors have tried to bring those critical parameters in this review which is currently being considered as important industrial parameters for Mn ore processing. This paper deals with both pyro-metallurgical and hydro-metallurgical routes for Mn ore reduction and gives brief summary about the critical parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    R. Sahoo, P. Naik, S. Das, Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution. Hydrometallurgy 62, 157–163 (2001)

    Article  Google Scholar 

  2. 2.

    J.S. Zhang, Current challenge and chance in China’s Mn-industry. China Manganese Ind 1, 6–9 (2007)

    Google Scholar 

  3. 3.

    M. Harris, The history, production and uses of electrolytic manganese. ATB Metall. 17, 121–127 (1977)

    Google Scholar 

  4. 4.

    P.K. Sahoo, K.S. Rao, Sulphation-roasting of low-grade manganese ores—optimisation by factorial design. Int. J. Miner. Process. 25, 147–152 (1989)

    Article  Google Scholar 

  5. 5.

    C. Abbruzzese, M.Y. Duarte, B. Paponetti, L. Toro, Biological and chemical processing of low-grade manganese ores. Miner. Eng. 3, 307–318 (1990). doi:10.1016/0892-6875(90)90126-V

    Article  Google Scholar 

  6. 6.

    A.A. Ismail, E.A. Ali, I.A. Ibrahim, M.S. Ahmed, A comparative study on acid leaching of low grade manganese ore using some industrial wastes as reductants. Can. J. Chem. Eng. 82, 1296–1300 (2008)

    Article  Google Scholar 

  7. 7.

    G. Furlani, F. Pagnanelli, L. Toro, Reductive acid leaching of manganese dioxide with glucose: identification of oxidation derivatives of glucose. Hydrometallurgy 81, 234–240 (2006)

    Article  Google Scholar 

  8. 8.

    C. Acharya, R.N. Kar, L.B. Sukla, Studies on reaction mechanism of bioleaching of manganese ore. Miner. Eng. 16, 1027–1030 (2003)

    Article  Google Scholar 

  9. 9.

    T. Kaneko, T. Matsuzaki, T. Kugimiya, K. Ide, M. Kumakura, A. Kasama, Improvement of Mn yield in less slag blowing at Bof by use of sintered manganese ore. J. Iron Steel Inst. Japan 79(8), 941–947 (1993)

    Google Scholar 

  10. 10.

    C. Tony, Mineral Commodity Report 7. Manganese (Institute of Geological and Nuclear Science Ltd, New Zealand, 2011)

  11. 11.

    R. Rait, S.E. Olsen, Liquidus relations of ferromanganese slags. Scand. J. Metall. 28, 53–58 (1999)

    Google Scholar 

  12. 12.

    O.I. Ostrovski, T.J.M. Webb, Reduction of siliceous manganese ore by graphite. ISIJ Int. 35, 1331–1339 (1995)

    Article  Google Scholar 

  13. 13.

    M. Yastreboff, O. Ostrovski, S. Ganguly, Carbothermic reduction of manganese from manganese ores and ferromanganese slag, in 8 th International Ferroalloys Congress, pp. 263–270 (1998)

  14. 14.

    M. Tangstad, The high carbon ferromanganese process-coke bed relations. Dr. Ing. Dissertation NTH, Trondheim, Norw (1996)

  15. 15.

    T.-A. Skjervheim, S. Olsen, The Rate and Mechanism for Reduction of Manganese Oxide from Silicate Slags (SINTEF, Trondheim, 1995)

    Google Scholar 

  16. 16.

    R.H. Eric, E. Burucu, The mechanism and kinetics of the carbothermic reduction of mamatwan manganese ore fines. Miner. Eng. 5, 795–815 (1992)

    Article  Google Scholar 

  17. 17.

    R. Kononov, O. Ostrovski, S. Ganguly, Carbothermal reduction of manganese oxide in different gas atmospheres. Metall. Mater. Trans. B 39, 662–668 (2008)

    Article  Google Scholar 

  18. 18.

    H. Abbas, M.A. Askar, E.M. Abd-Elaziz, Recycling of zinc–carbon spent batteries: I. Production of manganese and zinc as sulfates. Egypt. J. Chem. 42(4), 361–373 (1999)

    Google Scholar 

  19. 19.

    J.M.M. Paixao, J.C. Amaral, L.E. Memoria, L.R. Freitas, Sulfation of Carajas manganese ore. Hydrometallurgy 39(1–3), 215–222 (1995)

    Article  Google Scholar 

  20. 20.

    C. Ward, C.Y. Cheng, M.D. Urbani, Manganese—from waste to high-tech material. Publ. Australas. Inst. Min. Metall. 2(2004), 241–246 (2004)

    Google Scholar 

  21. 21.

    C.B. Ward, Acidic leaching of manganese from lean oxide ores with extraction stage for purity. WO Patent No. 2005012582 (2005)

  22. 22.

    P.K. Naik, S.C. Das, L.B. Sukla, Extraction of manganese from low-grade Nishikhal ore using pyritiferous lignite in acidic medium. Miner. Metall. Process. 19(2), 110–112 (2002)

    Google Scholar 

  23. 23.

    P.K. Naik, K.C. Nathsarma, S.C. Das, V.N. Misra, Leaching of low-grade Joda manganese ore with sulfur dioxide in aqueous medium. Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 112(2), C131–C134 (2003)

    Article  Google Scholar 

  24. 24.

    U. Sanigok, M. Bayramoglu, Bench-scale manganese sulfate production from low-grade pyrolusite ores—part III. Chim. Acta Turc. 16(1), 9–20 (1988)

    Google Scholar 

  25. 25.

    F. Veglio, L. Toro, Reductive leaching of a concentrate manganese-dioxide ore in acid-solution—stoichiometry and preliminary kinetic-analysis. Int. J. Miner. Process. 40(3–4), 257–272 (1994)

    Article  Google Scholar 

  26. 26.

    A.A. Ismail, E.A. Ali, I.A. Ibrahim, M.S. Ahmed, A comparative study on acid leaching of low grade manganese ore using some industrial wastes as reductants. Can. J. Chem. Eng. 82(6), 1296–1300 (2004)

    Article  Google Scholar 

  27. 27.

    R.P. Das, S. Anand, S.C. Das, P.K. Jena, Leaching of manganese nodules in ammoniacal medium using glucose as reductant. Hydrometallurgy 16, 335–344 (1986)

    Article  Google Scholar 

  28. 28.

    A.E. Elsherief, A study of the electroleaching of manganese ore. Hydrometallurgy 55(3), 311–326 (2000)

    Article  Google Scholar 

  29. 29.

    T. Jiang, Y.B. Yang, Z.C. Huang, G.Z. Qiu, Simultaneous leaching of manganese and silver from manganese–silver ores at room temperature. Hydrometallurgy 69(1–3), 177–186 (2003)

    Article  Google Scholar 

  30. 30.

    Y.M. Abdrashitov, Y.K., Dmitriev, N.V., Zakharova, S.N., Lakeev, V.V., Lapin, O.N., Loginov, A.I., Pavlov, N.N., Silishchev, I.A., Sorokin, V.D., Shapovalov, Acidic leaching for Mn recovery from manganese ores with oxide product precipitation. RU Patent No. 2176679 (2001)

  31. 31.

    W.F. Drinkard, Jr., H.J., Woerner, Leaching of metallurgical dust wastes in nitric acid for recovery of metal values. WO Patent No. 9716230 (1997)

  32. 32.

    F.E. Brantley, C., Rampacek, Manganese and iron recovery from leach solutions. US Patent No. 3397130 (1968)

  33. 33.

    H.L. Ehrilch, Manganese oxide reduction as a form of anaerobic respiration. Geomicrobiol. J. 5, 423–431 (1987). doi:10.1080/01490458709385977

    Article  Google Scholar 

  34. 34.

    W. Schwartz, R. Naveke, Biotechnische Laugungarmer erze mit heterotrophen mikroorganismen. Metall. Jahrg 34, 847–850 (1980)

    Google Scholar 

  35. 35.

    H.L. Ehrlich, Manganese as an energy source for bacteria, in Environmental Biolgeochemistry, ed. by J.O. Nriagu (Ann Harbor Science, Michigan, 1976), pp. 633–644

    Google Scholar 

  36. 36.

    L. Toro, B. Papponetti, C. Abbruzzese, A. Marrabini, M.Y. Duarte, Leaching of Mn2+ from concentrates of MnO2 by microorganism, in Microbiology of Extreme Environments and Its Potential for Biotechnology, ed. by M.S. Costa, J.C. Duarte, R.A.D. Williams (Elsevier, Amsterdam, 1988), pp. 395–396

    Google Scholar 

  37. 37.

    B. Papponetti, L. Toro, C. Abbruzzese, A. Marrabini, M.Y. Duarte, Manganese leaching from MnO2 ore by Aspergillus niger: role of metabolic ontermediate, in Biotechnology in Minerals and Metal Processing, ed. by B.J. Scheiner, F.M. Doyle, S.K. Kawatra (AIME, Ann Arbor, 1989), pp. 33–37

    Google Scholar 

  38. 38.

    D.R. Lovely, Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55, 259–287 (1994)

    Google Scholar 

  39. 39.

    K.H. Nealson, D. Saffarini, Iron and manganese in anaerobic respiration: environmental significance, physiology and regulation. Annu. Rev. Microbiol. 48, 311–343 (1994). doi:10.1146/annurev.mi.48.100194.001523

    Article  Google Scholar 

  40. 40.

    E. Young, L. Seung, R. Noh, K. Sukcho, H.W. Ryu, Leaching of Mn, Co and Ni from manganese nodule using bioleaching method, Korea. J. Biosci. Bioeng. 92, 354–359 (2001)

    Article  Google Scholar 

  41. 41.

    F. Habashi, A Textbook of Hydrometallurgy. (Metallurgie Extractive Quebec, 1993).

  42. 42.

    B. Ghafarizadeh, F. Rashchi, E. Vahidi, Recovery of manganese from electric arc furnace dust of ferromanganese production units by reductive leaching. Miner. Eng. 24, 174–176 (2011)

    Article  Google Scholar 

  43. 43.

    Y. Zhao, G. Zhu, Z. Cheng, Thermal analysis and kinetic modeling of manganese oxide ore reduction using biomass straw as reductant. Hydrometallurgy 105, 96–102 (2010)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Deepak Dwivedi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, D., Randhawa, N.S., Saroj, S. et al. An Overview of Manganese Recovery by Hydro and Pyro-Metallurgical Routes. J. Inst. Eng. India Ser. D 98, 147–154 (2017).

Download citation


  • Mn recovery
  • Mn ore
  • Hydrometallurgy
  • Pyrometallurgy
  • Leaching