Skip to main content
Log in

Effect on Different Anatomy Layers of Human Subject During Vibration Conditions Using FEM

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

During daily activities, individuals come into contact with various intensities and durations of vibrations, which can potentially lead to health issues such as headaches, vomiting, and even heart failure. When designing components for human use, it becomes essential to assess the vibration parameters affecting the human body, allowing for necessary actions to minimize its impact. In a current study, a 76 kg mass representing the 95th percentile anthropometric Indian human male population was used and a realistic CAD model was created, incorporating different anatomical layers and defining material properties for various organs and components. To understand the effect of vibrations, modal analysis was conducted on the standing posture of the human subject. This analysis helped identify the natural frequencies (eigenvalues) and the vibration patterns (mode shapes) as well as the deformations experienced by each anatomical layer. Notably, the head and lower arms were found to experience the maximum effects of vibration across all types of anatomy layers. The natural frequency values obtained in this study were compared with experimentally obtained data available in existing literature for further validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.K. Raines, M.Y. Jaffrin, A.H. Shapiro, A computer simulation of arterial dynamics in the human leg. J. Biomech. 7, 77–91 (1974). https://doi.org/10.1016/0021-9290(74)90072-4

    Article  CAS  PubMed  Google Scholar 

  2. J.A. Bartz, C.R. Gianotti, Computer program to generate dimensional and inertial properties of the human body. J. Eng. Ind. 97, 49–57 (1975). https://doi.org/10.1115/1.3438590

    Article  Google Scholar 

  3. E. Privitzer, T. Belytschko, Impedance of a three-dimensional head-spine model. Math. Model. 1, 189–209 (1980). https://doi.org/10.1016/0270-0255(80)90037-8

    Article  Google Scholar 

  4. K.C. Parsons, M.J. Griffin, Whole-body vibration perception thresholds. J. Sound Vib. 121, 237–258 (1988). https://doi.org/10.1016/S0022-460X(88)80027-0

    Article  ADS  Google Scholar 

  5. F.M.L. Amirouche, S.K. Ider, Simulation and analysis of a biodynamic human model subjected to low accelerations—a correlation study. J. Sound Vib. 123, 281–292 (1988). https://doi.org/10.1016/S0022-460X(88)80111-1

    Article  ADS  Google Scholar 

  6. G.S. Paddan, M.J. Griffin, The transmission of translational seat vibration to the head: the effect of measurement position at the head. Proc. Inst Mech. Eng. Part H J. Eng. Med. 206, 159–168 (1992). https://doi.org/10.1243/PIME_PROC_1992_206_283_02

    Article  CAS  Google Scholar 

  7. Randall, J.M., Matthews, R.T., Stiles, M.A.: Resonant frequencies of standing humans. 40, 879–886 (2010). https://doi.org/10.1080/001401397187711

  8. S. Kitazaki, M.J. Griffin, A modal analysis of whole-body vertical vibration, using a finite element model of the human body. J. Sound Vib. 200, 83–103 (1997). https://doi.org/10.1006/jsvi.1996.0674

    Article  ADS  Google Scholar 

  9. Y. Matsumoto, M.J. Griffin, Dynamic response of the standing human body exposed to vertical vibration: influence of posture and vibration magnitude. J. Sound Vib. 212, 85–107 (1998). https://doi.org/10.1006/JSVI.1997.1376

    Article  ADS  Google Scholar 

  10. N.J. Mansfield, M.J. Griffin, Non-linearities in apparent mass and transmissibility during exposure to whole-body vertical vibration. J. Biomech. 33, 933–941 (2000). https://doi.org/10.1016/S0021-9290(00)00052-X

    Article  CAS  PubMed  Google Scholar 

  11. M. Fritz, Simulating the response of a standing operator to vibration stress by means of a biomechanical model. J. Biomech. 33, 795–802 (2000). https://doi.org/10.1016/S0021-9290(00)00038-5

    Article  CAS  PubMed  Google Scholar 

  12. Y. Matsumoto, M.J. Griffin, Comparison of biodynamic responses in standing and seated human bodies. J. Sound Vib. 238, 691–704 (2000). https://doi.org/10.1006/JSVI.2000.3133

    Article  ADS  Google Scholar 

  13. Zheng, X., Brownjohn, J.M.W., Modeling and simulation of human-floor system under vertical vibration, in Proceedings of SPIE - The International Society for Optical Engineering (2001). p. 513–520

  14. Y. Matsumoto, M.J. Griffin, Mathematical models for the apparent masses of standing subjects exposed to vertical whole-body vibration. J. Sound Vib. 260, 431–451 (2003). https://doi.org/10.1016/S0022-460X(02)00941-0

    Article  ADS  Google Scholar 

  15. G.H.M.J. Subashi, Y. Matsumoto, M.J. Griffin, Apparent mass and cross-axis apparent mass of standing subjects during exposure to vertical whole-body vibration. J. Sound Vib. 293, 78–95 (2006). https://doi.org/10.1016/J.JSV.2005.09.007

    Article  ADS  Google Scholar 

  16. W.D.R. Baker, N.J. Mansfield, Effects of horizontal whole-body vibration and standing posture on activity interference. Ergonomics 53, 365–374 (2010). https://doi.org/10.1080/00140130903402242

    Article  CAS  PubMed  Google Scholar 

  17. Y. Matsumoto, M.J. Griffin, The horizontal apparent mass of the standing human body. J. Sound Vib. 330, 3284–3297 (2011). https://doi.org/10.1016/J.JSV.2011.01.030

    Article  ADS  Google Scholar 

  18. O. Thuong, M.J. Griffin, The vibration discomfort of standing persons: 0.516-Hz fore-and-aft, lateral, and vertical vibration. J. Sound Vib. 330, 816–826 (2011). https://doi.org/10.1016/j.jsv.2010.08.040

    Article  ADS  Google Scholar 

  19. O. Thuong, M.J. Griffin, The vibration discomfort of standing people: relative importance of fore-and-aft, lateral, and vertical vibration. Appl. Ergon. 43, 902–908 (2012). https://doi.org/10.1016/J.APERGO.2011.12.011

    Article  PubMed  Google Scholar 

  20. M. Tarabini, S. Solbiati, G. Moschioni, B. Saggin, D. Scaccabarozzi, Analysis of non-linear response of the human body to vertical whole-body vibration. Ergonomics 57, 1711–1723 (2014). https://doi.org/10.1080/00140139.2014.945494

    Article  PubMed  Google Scholar 

  21. K. Goggins, A. Godwin, C. Lariviere, T. Eger, Study of the biodynamic response of the foot to vibration exposure. Occup. Ergon. 13, 53–66 (2016). https://doi.org/10.3233/OER-160236

    Article  Google Scholar 

  22. A. Singh, I. Singh, S. Kalsi, Transmissibility evaluation of whole-body vibration using three-layer human CAD model. J. Inst. Eng. Ser. C. 101, 595–602 (2020). https://doi.org/10.1007/s40032-020-00559-6

    Article  Google Scholar 

  23. B. Chaurasia, Human Anatomy Regional and Applied Dissection and Clinical (Upper limb and thorax) (CBS Publishers & Distributors, New delhi, 2004)

    Google Scholar 

  24. Chakrabarti, D.: Indian Anthropometric Dimensions.pdf. National Institute of Design, National Institute of Design, Ahmedabad (1997)

  25. Chaurasia, B..: B.D. Chaurasia’s Human Anatomy Regional and Applied Dissection (Clinical Lower Limb, Abdomen & Pelvis). CBS Publishers & Distributors, New delhi, India (2006)

  26. B. Chaurasia, Human anatomy, Regional and Applied Dissection and Clinical (Head, Neck and Back) (CBS Publishers & Distributors, New delhi, 2004)

    Google Scholar 

  27. B. Chaurasia, B D Chaurasia’s Handbook of general anatomy (CBS Publishers & Distributors, New, 2009)

    Google Scholar 

  28. R.C. Dong, L. He, W. Du, Z.K. Cao, Z. Huang, long: Effect of sitting posture and seat on biodynamic responses of internal human body simulated by finite element modeling of body-seat system. J. Sound Vib. 438, 543–554 (2019). https://doi.org/10.1016/j.jsv.2018.09.012

    Article  ADS  Google Scholar 

  29. I. Singh, S.P. Nigam, V.H. Saran, Modal analysis of human body vibration model for Indian subjects under sitting posture. Ergonomics 58, 1117–1132 (2015). https://doi.org/10.1080/00140139.2014.961567

    Article  PubMed  Google Scholar 

  30. L.X. Guo, R.C. Dong, M. Zhang, Effect of lumbar support on seating comfort predicted by a whole human body-seat model. Int. J. Ind. Ergon. 53, 319–327 (2016). https://doi.org/10.1016/j.ergon.2016.03.004

    Article  Google Scholar 

  31. A.P.C. Choi, Y.P. Zheng, Estimation of Young’s modulus and Poisson’s ratio of soft tissue from indentation using two different-sized indentors: Finite element analysis of the finite deformation effect. Med. Biol. Eng. Comput. (2005). https://doi.org/10.1007/BF02345964

    Article  PubMed  Google Scholar 

  32. P. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. Gosselin, D. Payne, A. Klingenböck, N. Kuster, N., IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 4.0

  33. Y. Zhong, B. Shirinzadeh, G. Alici, J. Smith, Computer methods in biomechanics and biomedical engineering. Comput. Methods Biomech. Biomed. Engin. (2006). https://doi.org/10.1080/10255840600908503

    Article  PubMed  Google Scholar 

  34. Z. Li, Y. Luo, Finite element study of correlation between intracranial pressure and external vibration responses of human head. Adv. Theor. Appl. Mech. 3(3), 139–149 (2010)

    CAS  Google Scholar 

  35. T.I. Šušteršič, N. Filipovic, Computational modeling of dry-powder inhalers for pulmonary drug delivery. Comput. Model. Bioeng. Bioinforma. (2020). https://doi.org/10.1016/B978-0-12-819583-3.00008-4

    Article  Google Scholar 

  36. practical finite element analysis ( PDFDrive ).pdf

  37. M. Gupta, T.C. Gupta, Modal damping ratio and optimal elastic moduli of human body segments for anthropometric vibratory model of standing subjects. J. Biomech. Eng. (2017). https://doi.org/10.1115/1.4037403

    Article  PubMed  PubMed Central  Google Scholar 

  38. G.H.M.J. Subashi, Y. Matsumoto, M.J. Griffin, Modelling resonances of the standing body exposed to vertical whole-body vibration: effects of posture. J. Sound Vib. 317, 400–418 (2008). https://doi.org/10.1016/J.JSV.2008.03.019

    Article  ADS  Google Scholar 

Download references

Funding

There was no funding for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kalsi.

Ethics declarations

Competing interests

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kalsi, S., Singh, J. et al. Effect on Different Anatomy Layers of Human Subject During Vibration Conditions Using FEM. J. Inst. Eng. India Ser. C 105, 59–68 (2024). https://doi.org/10.1007/s40032-023-01023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-023-01023-x

Keywords

Navigation