Skip to main content
Log in

Influence of Wear on the Cross-Coupled Dynamic Coefficients and Threshold Speed of Conical Hybrid Fluid Film Bearing

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Hybrid journal bearings are used mostly to take benefits of simultaneous hydrostatic and hydrodynamic actions. This paper uses numerical technique to investigate wear effect on the cross-coupled dynamic coeff. and threshold stability speed of recessless conical hybrid journal bearing (CHJB) using capillary restrictor. The developed Reynolds equation describing the streamline incompressible flow, iso-viscous lubricating fluid in the narrow region of conical bearing and journal is resolved by methodology of finite element. Results obtained by numerical simulation reveal the considerable change in the dynamic coeff. and threshold stability speed of worn CHJB as compared to newly installed bearing of matching configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Radius of capillary (mm)

c :

Radial clearance (mm)

C ij :

Damping coefficient (i, j = 1, 2) (N s/mm)

D m :

Mean bearing diameter (mm)

δ w :

Wear depth parameter (mm)

e :

Journal eccentricity (mm)

F :

Fluid film reaction \(\frac{{\partial \overline{h}}}{{\partial \overline{t}}} \ne 0\) (N)

h :

Fluid film thickness (mm)

L :

Bearing length (mm)

l c :

Length of capillary (mm)

p :

Pressure (N/mm2)

p s :

Lubricant supply pressure (N/mm2)

Q :

Bearing flow (mm3/s)

r, θ, φ :

Spherical coordinates

R j :

Mean radius of conical journal (mm)

S ij :

Fluid film stiffness coefficient (i, j = 1, 2) (N/mm)

t :

Time (s)

W r :

Radial load (N)

β :

Axial coordinates (rsinγ/Rj)

β*:

Concentric design pressure

X, Y, Z :

Cartesian coordinates

X j, Z j :

Coordinates of equilibrium journal center

α :

Circumferential coordinate

α b and α e :

Angles at the beginning and the end of the worn region

γ :

Semi-cone angle

λ :

Aspect ratio, L/Dm

Ω:

Speed parameter, \(\omega_{{\text{j}}} \left( {\mu R_{{\text{j}}}^{2} /c^{2} p_{{\text{s}}} } \right)\)

μ :

Dynamic viscosity of lubricant (N s m−2)

μ s :

Dynamic viscosity at reference inlet temperature and ambient pressure, (N s m−2)

ω j :

Journal rotational speed (rad s−1)

\(\overline{C}_{ij}\) :

\(C_{ij} \,(C^{3} /\mu R_{{\text{j}}}^{4} )\), Damping coefficients

\(\overline{\delta }_{{\text{w}}}\) :

\(\delta_{{\text{w}}} / c\) Wear depth parameter

\(\overline{F}\) :

\(F/p_{{\text{s}}} R_{{\text{j}}}^{2}\), Fluid film reaction

\(\overline{F}_{{\text{o}}}\) :

\(F_{{\text{o}}} /p_{{\text{s}}} R_{{\text{j}}}^{2}\)

\(\overline{h}\) :

h/c

\(\overline{h}_{\min }\) :

hMin/c, minimum fluid film thickness

\(\overline{p}, \overline{p}_{\max }\) :

\(\left( {p, p_{\max } } \right)/p_{{\text{s}}}\)

\(\overline{Q}\) :

\(Q(\mu /c^{3} p_{{\text{s}}} )\)

\(\overline{S}_{ij}\) :

\(S_{ij} (c/p_{{\text{s}}} R_{{\text{j}}}^{2} )\) stiffness coefficient

\(\overline{t}\) :

\(t(c^{2 } p_{{\text{s}}} / \mu R_{{\text{j}}}^{2} )\)

\(\overline{W}_{{\text{a}}}\) :

\(W_{{\text{a}}} /p_{{\text{s}}} R_{{\text{j}}}^{2}\) external load

\(\overline{W}_{{\text{r}}}\) :

\(W_{{\text{r}}} /p_{{\text{s}}} R_{{\text{j}}}^{2}\)

\(\overline{X}_{j}\) :

\(X_{j} / c\)

\(\overline{Z}_{j}\) :

\(Z_{j} /c\)

\(\overline{X}_{j} \overline{,Z}_{j}\) :

Velocity components of journal center

β :

\(r\sin \gamma / R_{{\text{j}}}\) axial coordinates

ε :

E/c, eccentricity ratio

\(\overline{\mu }\) :

\(\mu /\mu_{{\text{r}}}\)

Ω:

\(\omega_{j} \left( {\mu R_{{\text{j}}}^{2} /c^{2} p_{{\text{s}}} } \right)\), speed parameter

References

  1. K.J. Stout, W.B. Rowe, Externally pressurised design for manufacture: part 1 journal bearing selection. Tribol. Int. 7(3), 98–106 (1974)

    Article  Google Scholar 

  2. J.T. Prabhu, N. Ganesan, Characteristics of conical hydrostatic thrust bearings under rotation. Wear 73(1), 95–122 (1981)

    Article  Google Scholar 

  3. J.T. Prabhu, N. Ganesan, Analysis of multirecess conical hydrostatic thrust bearings under rotation. Wear 89(1), 29–40 (1983)

    Article  Google Scholar 

  4. W.B. Rowe, S.X. Xu, Hybrid journal bearing with particular reference to hole-entry configuration. Tribol. Int. 15(6), 339–348 (1982)

    Article  Google Scholar 

  5. K.F. Dufrane, J.W. Kannel, T.H. McCloskey, Wear of steam turbine journal bearings at low operating speeds. J. Lubric. Technol. 105, 313–317 (1983)

    Article  Google Scholar 

  6. S. Yoshimoto, W.B. Rowe, A Theoretical investigation of the effect of inlet pocket-size on the performance of hole-entry hybrid journal bearing employing capillary restrictors. Wear 127(3), 307–318 (1988)

    Article  Google Scholar 

  7. M. Fillon, J.I. Bouyer, Influence of wear on the behaviour of a two-lobe hydrostatic journal bearing subjected to numerous start-ups and stops. ASME J. Tribol. 129, 205–208 (2007)

    Article  Google Scholar 

  8. R.K. Awasthi, S.C. Sharma, S.C. Jain, Effect of wear on the performance of non-recessed orifice compensated hybrid journal bearing. Tribol. Trans. 50(3), 361–373 (2007)

    Article  Google Scholar 

  9. S.C. Sharma, V.M. Phalle, S.C. Jain, Influence of Wear on the performance of a multirecess conical hybrid journal bearing compensated with orifice restrictor. Tribol. Int. 44(12), 1754–1764 (2011)

    Article  Google Scholar 

  10. P.G. Khakse, V.M. Phalle, S.S. Mantha, Performance analysis of a non-recessed hybrid conical journal bearing compensated with capillary restrictors. ASME J. Tribol. 138(1), 011703–011709 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is the expanded version of the article entitled, “Influence of wear on the cross coupled stiffness, damping coefficients and threshold speed of hybrid conical journal bearing” was presented in “National Conference on Emerging Trends in Mechanical Engineering (NCETME),” held at VIT, Pune, Feb. 7–8, 2019.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay R. Pawar.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, S.R., Phalle, V.M. & Sawant, P.K. Influence of Wear on the Cross-Coupled Dynamic Coefficients and Threshold Speed of Conical Hybrid Fluid Film Bearing. J. Inst. Eng. India Ser. C 104, 1173–1180 (2023). https://doi.org/10.1007/s40032-023-01000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-023-01000-4

Keywords

Navigation