Skip to main content

Advertisement

Log in

Application of Smart Strategies for Sustainable Manufacturing of Conventional Machining Process: A Review

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

The manufacturing industries have played a stellar role in contributing toward global economy. However, the industrial development of the past decades was built on traditional manufacturing. Nowadays, smart manufacturing approach is desirable for economic growth of the country. In this paper, various emerging approaches are discussed for sustainable and smart machining process. The first four approaches are concerned with the process of machinability enhancement and are used to assess machining performance as well as its economic implications. Novel approaches for designing and modelling of tools that aid in the supply of coolant/lubricant in a smooth and effective manner are discussed. Modelling and setting upgraded fixtures can assist in regulating the production time of machining process. The implementation of developing technologies in futuristic manufacturing is the fifth crucial factor. Furthermore, it aims to figure out how to increase machinability so that it does not affect the employees and results in a more environmentally friendly manufacturing process. The discussed approaches can make industries more productive and efficient to bring ground breaking changes in order to move toward smart and sustainable machining processes that can help in bringing about a cleaner world and a better tomorrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Cited the data and available in manuscript.

Code availability

Not applicable.

References

  1. F. Pusavec, H. Hamdi, J. Kopac, I. Jawahir, Surface integrity in cryogenic machining of nickel based alloy—Inconel 718. J. Mater. Process. Technol. 211(4), 773–783 (2011). https://doi.org/10.1016/j.jmatprotec.2010.12.013

    Article  Google Scholar 

  2. P. Sivaiah, G.V. Ajay Kumar, M.M. Singh, H. Kumar, Effect of novel hybrid texture tool on turning process performance in MQL machining of Inconel 718 superalloy. Mater. Manuf. Process. 35(1), 61–71 (2020)

    Article  Google Scholar 

  3. S. Shu, Y. Zhang, Y. He, H. Zhang, Design of a novel turning tool cooled by combining circulating internal cooling with spray cooling for green cutting. J. Adv. Mech. Des. Syst. Manuf. (2021). https://doi.org/10.1299/jamdsm.2021jamdsm0003

    Article  Google Scholar 

  4. S.R. Oke, G.S. Ogunwande, M. Onifade, E. Aikulola, E.D. Adewale, O.E. Olawale, M.O. Bodunrin, An overview of conventional and non-conventional techniques for machining of titanium alloys. Manuf. Rev. 7, 34 (2020)

    Google Scholar 

  5. World Commission on Environment and Development, Our Common Future (Oxford University Press, New York, 1987)

    Google Scholar 

  6. K.R. Haapala, Fu. Zhao, J. Camelio, J.W. Sutherland, S.J. Skerlos, D.A. Dornfeld, I.S. Jawahir, A.F. Clarens, J.L. Rickli, A review of engineering research in sustainable manufacturing. J. Manuf. Sci. Eng. 135(4), 041013 (2013)

    Article  Google Scholar 

  7. D. Hariyani, S. Mishra, P. Hariyani, M.K. Sharma, Drivers and motives for sustainable manufacturing system. Innov. Green Dev. 2(1), 100031 (2023)

    Article  Google Scholar 

  8. D. Hariyani, S. Mishra, M.K. Sharma, P. Hariyani, Organizational barriers to the sustainable manufacturing system: A literature review. Environ. Chall. 9, 100606 (2022). https://doi.org/10.1016/j.envc.2022.100606

    Article  Google Scholar 

  9. Y. Su, N. He, L. Li, X. Li, An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear 261(7–8), 760–766 (2006). https://doi.org/10.1016/j.wear.2006.01.013

    Article  Google Scholar 

  10. Ç. Yıldırım, T. Kıvak, M. Sarıkaya, F. Erzincanlı, Determination of MQL parameters contributing to sustainable machining in the milling of nickel-base superalloywaspaloy. Arab. J. Sci. Eng. 42(11), 4667–4681 (2017). https://doi.org/10.1007/s13369-017-2594-z

    Article  Google Scholar 

  11. A. Okafor, T. Nwoguh, Comparative evaluation of soybean oil–based MQL flow rates and emulsion flood cooling strategy in high-speed face milling of Inconel 718. Int. J. Adv. Manuf. Technol. 107(9–10), 3779–3793 (2020). https://doi.org/10.1007/s00170-020-05248-3

    Article  Google Scholar 

  12. Y. Deshpande, A. Andhare, P. Padole, Experimental results on the performance of cryogenic treatment of tool and minimum quantity lubrication for machinability improvement in the turning of Inconel 718. J. Braz. Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/s40430-017-0920-8

    Article  Google Scholar 

  13. M. Sadik, S. Isakson, A. Malakizadi, L. Nyborg, Influence of coolant flow rate on tool life and wear development in cryogenic and wet milling of Ti-6Al-4V. Procedia CIRP 46, 91–94 (2016). https://doi.org/10.1016/j.procir.2016.02.014

    Article  Google Scholar 

  14. A. Aramcharoen, S. Chuan, An experimental investigation on cryogenic milling of inconel 718 and its sustainability assessment. Procedia CIRP 14, 529–534 (2014). https://doi.org/10.1016/j.procir.2014.03.076

    Article  Google Scholar 

  15. A. Iturbe, E. Hormaetxe, A. Garay, P. Arrazola, Surface integrity analysis when machining inconel 718 with conventional and cryogenic cooling. Procedia CIRP 45, 67–70 (2016). https://doi.org/10.1016/j.procir.2016.02.095

    Article  Google Scholar 

  16. D. Shokrani, V., Newman, S., & Imani-Asrai, R., An initial study of the effect of using liquid nitrogen coolant on the surface roughness of inconel 718 nickel-based alloy in CNC milling. Procedia CIRP 3, 121–125 (2012). https://doi.org/10.1016/j.procir.2012.07.022

    Article  Google Scholar 

  17. F. Pusavec, Porous tungsten machining under cryogenic conditions. Int. J. Refr. Metals Hard Mater. 35, 84–89 (2012). https://doi.org/10.1016/j.ijrmhm.2012.04.009

    Article  Google Scholar 

  18. T. Obikawa, A. Kamio, H. Takaoka, A. Osada, Micro-texture at the coated tool face for high performance cutting. Int. J. Mach. Tools Manuf 51(12), 966–972 (2011)

    Article  Google Scholar 

  19. Shu, S. R. Design and analysis of the internally cooled smart turning tool and experimental study. Ph.D. thesis, Harbin Institute of Technology, Harbin, 2014 (in Chinese).

  20. T. Sugihara, Y. Nishimoto, T. Enomoto, Development of a novel cubic boron nitride cutting tool with a textured flank face for high-speed machining of Inconel 718. Precis. Eng. 48, 75–82 (2017)

    Article  Google Scholar 

  21. M. El-Bestawi, T. El-Wardany, D. Yan, M. Tan, Performance of whisker-reinforced ceramic tools in milling nickel-based superalloy. CIRP Ann. 42(1), 99–102 (1993). https://doi.org/10.1016/s0007-8506(07)62401-9

    Article  Google Scholar 

  22. M. Aramesh, S. Montazeri, S. Veldhuis, A novel treatment for cutting tools for reducing the chipping and improving tool life during machining of Inconel 718. Wear 414–415, 79–88 (2018). https://doi.org/10.1016/j.wear.2018.08.002

    Article  Google Scholar 

  23. Swami, A., & Kondhalkar, G. Design, development and analysis of hydraulic fixture for machining engine cylinder block on VMC. Int. Res. J. Eng. Technol. 463–469 (2016).

  24. C. Patel, G. Acharya, Design and manufacturing of 8 cylinder hydraulic fixture for boring yoke on VMC - 1050. Procedia Technol. 14, 405–412 (2014). https://doi.org/10.1016/j.protcy.2014.08.052

    Article  Google Scholar 

  25. J. Dhulia, N. Maniar, Design, modelling and manufacturing of 16 cylinder hydraulic fixture with automated clamping system. J. Phys. Conf. Ser. 1240(1), 012036 (2019). https://doi.org/10.1088/1742-6596/1240/1/012036

    Article  Google Scholar 

  26. N. Amaral, J. Rencis, Y. Rong, Development of a finite element analysis tool for fixture design integrity verification and optimisation. Int. J. Adv. Manuf. Technol. 25(5–6), 409–419 (2004). https://doi.org/10.1007/s00170-003-1796-6

    Article  Google Scholar 

  27. N. Maniar, D. Vakharia, Design & development of rotary fixture for CNC with computer aided mass balancing method as pre-mortem tool. Procedia Technol. 14, 397–404 (2014). https://doi.org/10.1016/j.protcy.2014.08.051

    Article  Google Scholar 

  28. M. Jegan, B. Pitchia Krishnan, M. Shanmugam, I.K. Raj, P., & Bose, K., Design and analysis of hydraulic fixture for hydraulic lift housing. J. Phys. Conf. Ser. 1964(7), 072019 (2021). https://doi.org/10.1088/1742-6596/1964/7/072019

    Article  Google Scholar 

  29. R. Patil, D. Dinesh, H. Sachin, K. Vishal, Design of milling fixture in mass production of pivot block. Asian Rev. Mech. Eng. 6(1), 13–17 (2017)

    Article  Google Scholar 

  30. Ç. Yıldırım, T. Kıvak, F. Erzincanlı, Influence of different cooling methods on tool life, wear mechanisms and surface roughness in the milling of nickel-based waspaloy with WC tools. Arab. J. Sci. Eng. 44(9), 7979–7995 (2019). https://doi.org/10.1007/s13369-019-03963-y

    Article  Google Scholar 

  31. Deshpande, Y., Andhare, A., & Padole, P. Performance appraisal of cryogenically treated tool in dry, MQL and cryogenic machining of Inconel 718. Adv. Mech. Engi., Lecture Notes Mech. Eng. (2020)

  32. Pham, M., Yoon, H., Khare, V., &Ahn, S. Evaluation of ionic liquids as lubricants in micro milling—process capability and sustainability. (2014)

  33. A. Khan, K. Maity, Comparative study of some machinability aspects in turning of pure titanium with untreated and cryogenically treated carbide inserts. J. Manuf. Process. 28, 272–328 (2017)

    Article  Google Scholar 

  34. A.V. Pradeep, A., Dumpala, L., & Ramakrishna, S., Effect of MQL on roughness, white layer and microhardness in hard turning of AISI 52100. Emerg. Mater. Res. 8(1), 29–43 (2019). https://doi.org/10.1680/jemmr.18.00038

    Article  Google Scholar 

  35. N. Uçak, A. Çiçek, The effects of cutting conditions on cutting temperature and hole quality in drilling of Inconel 718 using solid carbide drills. J. Manuf. Process. 31, 662–673 (2018). https://doi.org/10.1016/j.jmapro.2018.01.003

    Article  Google Scholar 

  36. D. Ibrahim, An overview of soft computing. Procedia Comput. Sci. 102, 34–38 (2016)

    Article  Google Scholar 

  37. Shukla, K. K., Sinha, Naresh K.; Gupta, MADAN M. (eds.), "CHAPTER 17 - Soft Computing Paradigms for Artificial Vision", Soft Computing and Intelligent Systems, Academic Press Series in Engineering, San Diego: Academic Press, pp. 405–417, ISBN 978–0–12 646490–0, retrieved 2021–02–24 (2000)

  38. I.S. Jawahir, D.A. Stephenson, B. Wang, A review of advances in modeling of conventional machining processes: from merchant to the present. J. Manuf. Sci. Eng. 144, 110801–110811 (2022)

    Article  Google Scholar 

  39. Y. Deshpande, A. Andhare, P. Padole, Application of statistical and soft computational techniques in machining of Nickel based supper-alloy using cryogenically treated tools for estimation of surface roughness. Aust. J. Mech. Eng. (2022). https://doi.org/10.1080/14484846.2021.2023349

    Article  Google Scholar 

  40. Kuram, E., Simsek, B. T., Ozcelik, B., Demirbas, E., & Askin, S. Optimization of the cutting fluids and parameters using Taguchi and ANOVA in milling. In: Proceedings of the world congress on engineering (Vol. 2, pp. 1–5) (2010)

  41. S. Tesic, D. Cica, S. Borojevic, B. Sredanovic, M. Zeljkovic, D. Kramar, F. Pusavec, Optimization and prediction of specific energy consumption in ball-end milling of Ti-6Al-4V alloy under MQL and cryogenic cooling/lubrication conditions. Int. J. Precis. Engi. Manuf. Green Technol. (2022). https://doi.org/10.1007/s40684-021-00413-9

    Article  Google Scholar 

  42. P. Dumbhare, S. Dubey, V. Deshpande, Y., Andhare, A., & Barve, P., Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel. J. Braz. Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/s40430-018-1186-5

    Article  Google Scholar 

  43. A. Madankar, P. Dumbhare, Y. Deshpande, A. Andhare, P. Barve, Estimation and control of surface quality and traverse speed in abrasive water jet machining of AISI 1030 steel using different work-piece thicknesses by RSM. Aust. J. Mech. Eng. (2021). https://doi.org/10.1080/14484846.2021.1876600

    Article  Google Scholar 

  44. I. La FéPerdomo, R. Quiza, D. Haeseldonckx, M. Rivas, Sustainability-focused multi-objective optimization of a turning process. Int. J. Precis. Eng. Manuf. Green Technol. 7(5), 1009–1018 (2019). https://doi.org/10.1007/s40684-019-00122-4

    Article  Google Scholar 

  45. F. Han, L. Li, W. Cai, C. Li, X. Deng, J. Sutherland, Parameters optimization considering the trade- off between cutting power and MRR based on linear decreasing particle swarm algorithm in milling. J. Clean. Prod. 262, 121388 (2020). https://doi.org/10.1016/j.jclepro.2020.121388

    Article  Google Scholar 

  46. R. Venkata Rao, P. Pawar, Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms. Appl. Soft Comput. 10(2), 445–456 (2010). https://doi.org/10.1016/j.asoc.2009.08.007

    Article  Google Scholar 

  47. D. Jang, J. Jung, J. Seok, Modeling and parameter optimization for cutting energy reduction in MQL milling process. Int. J. Precis. Eng. Manuf.-Green Technol. 3(1), 5–12 (2016). https://doi.org/10.1007/s40684-016-0001-y

    Article  Google Scholar 

  48. Y.V. Deshpande, A.B. Andhare, P.M. Padole, Application of ANN to estimate surface roughness using cutting parameters, force, sound and vibration in turning of Inconel 718. SN Appl. Sci. 1, 104 (2019). https://doi.org/10.1007/s42452-018-0098-4

    Article  Google Scholar 

  49. Y. Deshpande, A. Andhare, N. Sahu, Estimation of surface roughness using cutting parameters, force, sound, and vibration in turning of Inconel 718. J. Braz. Soc. Mech. Sci. Eng. 39(12), 5087–5096 (2017). https://doi.org/10.1007/s40430-017-0819-4

    Article  Google Scholar 

  50. Deshpande, Y., Andhare, A., Padole, P., & Sahu, N. Application of advanced algorithms for enhancement in machining performance of Inconel 718. Indian J. Eng. Mater. Sci. 25: 366–376 (2018).

  51. L. Zhang, B. Zhang, H. Bao, H. Huang, Optimization of cutting parameters for minimizing environmental impact: considering energy efficiency, noise emission and economic dimension. Int. J. Precis. Eng. Manuf. 19(4), 613–624 (2018). https://doi.org/10.1007/s12541-018-0074-3

    Article  Google Scholar 

  52. M. Aazam, S. Zeadally, K.A. Harras, Deploying fog computing in industrial internet of things and industry 4 0. IEEE Trans. Industr. Inf. 14(10), 4674–4682 (2018)

    Article  Google Scholar 

  53. M.H. Ur Rehman, I. Yaqoob, K. Salah, M. Imran, P.P. Jayaraman, C. Perera, The role of big data analytics in industrial Internet of Things. Future Gener. Comput. Syst. 99, 247–259 (2019)

    Article  Google Scholar 

  54. C. Cronin, A. Conway, J. Walsh, Flexible manufacturing systems using IIoT in the automotive sector. Procedia Manuf. 38, 1652–1659 (2019)

    Article  Google Scholar 

  55. Karnouskos, S., Colombo, A. W., Lastra, J. L. M., & Popescu, C. Towards the energy efficient future factory. In: 2009 7th IEEE International Conference on Industrial Informatics (pp. 367–371) (2009)

  56. D. Wu, S. Liu, L. Zhang, J. Terpenny, R.X. Gao, T. Kurfess, J.A. Guzzo, A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing. J. Manuf. Syst. 43, 25–34 (2017)

    Article  Google Scholar 

  57. L. Wang, W. Ji, Cloud enabled CPS and big data in manufacturing. Lecture Notes Mech. Eng. (2018). https://doi.org/10.1007/978-3-319-89563-5_20

    Article  Google Scholar 

  58. C. Li, Y. Chen, Y. Shang, A review of industrial big data for decision making in intelligent manufacturing. Eng. Sci. Technol. Int. J. 29, 101021 (2022)

    Google Scholar 

  59. W. Ji, J. Shi, X. Liu, L. Wang, S. Liang, A novel approach of tool wear evaluation. J. Manuf. Sci. Eng. (2017). https://doi.org/10.1115/1.4037231

    Article  Google Scholar 

  60. F. Tao, Q. Qi, A. Liu, A. Kusiak, Data-driven smart manufacturing. J. Manuf. Syst. 48, 157–169 (2018)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh V. Deshpande.

Ethics declarations

Conflict of interest

No conflicts of interest among all authors.

Ethical approval

Used data, appropriately cited in the manuscript.

Consent to participate

Informed to all authors regarding participation.

Consent for publication

Informed to all authors regarding publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshpande, Y.V., Ayer, S., Agrawal, T. et al. Application of Smart Strategies for Sustainable Manufacturing of Conventional Machining Process: A Review. J. Inst. Eng. India Ser. C 104, 1267–1289 (2023). https://doi.org/10.1007/s40032-023-00995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-023-00995-0

Keywords

Navigation