Skip to main content

Advertisement

Log in

Some Investigations to Enhance the Peak Operating Time of a Concentrating Solar Power Plant with Focus on Heat Transfer Fluids

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Two heat transfer fluids were prepared and tested for their thermophysical properties in order to assess their suitability as a heat transfer fluid in concentrating solar power plant (CSP) operations. The first fluid was a ternary salt mixture containing Ca(NO3)2–KNO3–NaNO3. It has a lower melting point as compared to Solar Salt®. This salt is found to have comparable viscosities and densities at CSP operating temperatures. However, a slight decrease in the thermal stability (~ 1% mass loss at 873 K) is observed. This salt is also more economical and displayed lower corrosion behavior for SS304 steels. The second fluid investigated is an oxide mixture of B2O3-SiO2. This mixture is tested for thermal stability as a replacement for Solar Salt®. It displayed better thermal stability even at temperatures around 1023 K. However, due to the high viscosity, a network modifier, Na2O is added; which in turn reduced the viscosity to approximately 87% of its initial value. The thermal stability of this ternary mixture is also improved, exhibiting ~ 0.3% mass loss at 1373 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CSP:

Concentrating solar power

HTF:

Heat transfer fluid

ΔW :

Change in the weight of the sinker

T :

Temperature of the liquid (K)

T o :

Room temperature (K)

α :

Thermal expansion coefficient of SS304

V :

Volume of the sinker immersed in the liquid (cm3)

ρ :

Density of the liquid (kg/m3)

TK :

System constant (= 0.09373)

SMC :

Bob constant

Y :

% Torque measured

η :

Viscosity (cP)

A :

Corrosion rate (mg/mm2)

m o :

Mass of the specimen before test (g)

m 1 :

Mass of the specimen after test (g)

S :

Surface area of the specimen (mm2

References

  1. Y. Tian, C.Y. Zhao, Appl. Energy 104, 538 (2013)

    Article  Google Scholar 

  2. K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Appl. Energy 146, 383 (2015)

    Article  Google Scholar 

  3. Y.Y. Chen, C.Y. Zhao, Sol. Energy 146, 172 (2017)

    Article  Google Scholar 

  4. R.I. Olivares, W. Edwards, Thermochim. Acta 560, 34 (2013)

    Article  Google Scholar 

  5. R. W. Bradshaw, N. P. Siegel, in ASME 2008 2nd Int. Conf. Energy Sustain. Collocated with Heat Transf. Fluids Eng. 3rd Energy Nanotechnol. Conf. (2008), pp. 631–637

  6. Halotechnics Inc. n.d., (n.d.).

  7. D. Kearney, U. Herrmann, P. Nava, B. Kelly, R. Mahoney, J. Pacheco, R. Cable, N. Potrovitza, D. Blake, H. Price, J. Sol. Energy Eng. 125, 170 (2003)

    Article  Google Scholar 

  8. C.W. Forsberg, P.F. Peterson, H. Zhao, J. Sol. Energy Eng. 129, 141 (2007)

    Article  Google Scholar 

  9. B. Elkin, L. Finkelstein, T. Dyer, J. Raade, Energy Procedia 49, 772 (2014)

    Article  Google Scholar 

  10. M. S. Sohal, M. A. Ebner, P. Sabharwall, and P. Sharpe, Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties (2010)

  11. R. Serrano-López, J. Fradera, S. Cuesta-López, Chem. Eng. Process. Process Intensif. 73, 87 (2013)

    Article  Google Scholar 

  12. L. L. C. n. d. Coastal Chemical Co., (n.d.).

  13. A.G. Fernández, S. Ushak, H. Galleguillos, F.J. Pérez, Appl. Energy 119, 131 (2014)

    Article  Google Scholar 

  14. J.G. Cordaro, N.C. Rubin, and R.W. Bradshaw, J. Sol. Energy Eng. 133, (2011)

  15. F. Roget, C. Favotto, J. Rogez, Sol. Energy 95, 155 (2013)

    Article  Google Scholar 

  16. C.Y. Zhao, Z.G. Wu, Sol. Energy Mater. Sol. Cells 95, 3341 (2011)

    Article  Google Scholar 

  17. P. Zhang, J. Cheng, Y. Jin, X. An, Sol. Energy Mater. Sol. Cells 176, 36 (2018)

    Article  Google Scholar 

  18. W. Zhai, B. Yang, M. Li, S. Li, M. Xin, S. Zhang, and G. Huang, in AIP Conf. Proc. (2017), p. 20016.

  19. K.-C. Chou, S.-K. Wei, Metall. Mater. Trans. B 28(3), 439 (1997)

    Article  Google Scholar 

  20. V. Shrotri, L. Muhmood, Calphad 68, 101749 (2020)

    Article  Google Scholar 

  21. O.J. Kleppa, L.S. Hersh, Discuss. Faraday Soc. 32, 99 (1961)

    Article  Google Scholar 

  22. J.G. Cordaro, R. Altmaier, A.M. Kruizenga, A. Nissen, and M. Sampson, (2011)

  23. A. Standard, Clean. Eval. Corros. Test Specimens. ASTM Int. 15 (n.d.)

  24. M.C. Trent, S.H. Goods, and R.W. Bradshaw, in AIP Conf. Proc. (2016), p. 160017

  25. J.C. Gomez, N. Calvet, A.K. Starace, and G.C. Glatzmaier, J. Sol. Energy Eng. 135, (2013).

  26. S.H. Goods, R.W. Bradshaw, J. Mater. Eng. Perform. 13, 78 (2004)

    Article  Google Scholar 

  27. C. Parrado, A. Marzo, E. Fuentealba, A.G. Fernández, Renew. Sustain. Energy Rev. 57, 505 (2016)

    Article  Google Scholar 

  28. J.C.E.P. Victor Andrés Patiño Mantilla, Osvaldo J. Venturini, in 16th Brazilian Congr. Therm. Sci. Eng. (Vitória, ES, Brazil, 2016)

  29. H. Jabraoui, Y. Vaills, A. Hasnaoui, M. Badawi, S. Ouaskit, J. Phys. Chem. B 120, 13193 (2016)

    Article  Google Scholar 

  30. A. Pedone, G. Malavasi, A.N. Cormack, U. Segre, M. Cristina Menziani, Chem. Mater. 19, 3144 (2007)

    Article  Google Scholar 

  31. V.S. Gmbh, Slag Atlas, 2nd Editio (Verlag Stahleisen GmbH, Dusseldorf, 1995)

    Google Scholar 

  32. D. Xie and S. Jahanshahi, in 4th Int. Congr. Sci. Technol. Steelmak. (Gifu, Japan, 2008), pp. 674–677.

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology (SERB/EMR/2016/002784) for funding the project. This article is the extended version of their presented papers during 'International Conference on Energy and Sustainable Development' held at Kolkata, India on February 14–15, 2020

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luckman Muhmood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrotri, V., Muhmood, L. Some Investigations to Enhance the Peak Operating Time of a Concentrating Solar Power Plant with Focus on Heat Transfer Fluids. J. Inst. Eng. India Ser. C 103, 197–205 (2022). https://doi.org/10.1007/s40032-021-00761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-021-00761-0

Keywords

Navigation