Skip to main content
Log in

The Small Punch Test a Viable Alternate for In-service Components Preserved Strength Estimation

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

A Correction to this article was published on 30 August 2021

This article has been updated

Abstract

The small punch test (SPT) is a miniature specimen testing technique to extract the mechanical strength characterization of the in-service component—to determine its preserved strength and fitness-for-service. This technique delivers a convincing test outcome inline to conventional testing using a universal testing machine. The bulk material to retrieve from the in-service component for testing is quite challenging without compromising the structural strength integrity so this technique comes in handy to serve the purpose. During the SP testing, the miniaturized specimen is indented using a rigid ball punch, and the specimen’s load–displacement response is measured simultaneously. Such load–displacement response is post-processed further to determine the preserved strength parameters to assess the remaining life of the system to be fit for service. During the last couple of decades, numerous research advancements are made and several researchers have proposed various graphical and analytical approaches to improve the strength determination and mechanical characterization practice. However, many diverse opinions emerged in the efforts to formulate the reliable and universal mechanical characterization approach, using the SPT load–displacement data. This paper attempts to summarize the latest developments which are made and verifying the viability of popular graphical and analytical approaches for non-irradiated ductile iron, 65-45-12 material which is extracted from the in-service general-purpose mechanical system. It is also outlined the certain challenges and potential scope of improvement for SPT technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Change history

References

  1. M.P. Manahan, A.S. Argon, O.K. Harling, The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J. Nucl. Mater. 104, 1545–1550 (1981). https://doi.org/10.1016/0022-3115(82)90820-0

    Article  Google Scholar 

  2. J. Kameda, O. Buck, Evaluation of the ductile-to-brittle transition temperature shift due to temper embrittlement and neutron irradiation by means of a small-punch test. Mater. Sci. Eng. 83, 29–38 (1986). https://doi.org/10.1016/0025-5416(86)90171-0 

    Article  Google Scholar 

  3. J.M. Baik, J. Kameda, O. Buck, Small punch test evaluation of intergranular embrittlement of an alloy steel. Scr. Metall. 17, 1443–1447 (1983). https://doi.org/10.1016/0036-9748(83)90373-3

    Article  Google Scholar 

  4. G.E. Lucas, The development of small specimen mechanical test techniques. J. Nucl. Mater. 117, 327–339 (1983). https://doi.org/10.1016/0022-3115(83)90041-7

    Article  Google Scholar 

  5. CEN Workshop Agreement, Small Punch Test Method for Metallic Materials, CWA 15627:2007 (2007)

  6. T. Misawa, T. Adachi, M. Saito, Y. Hamaguchi, Small punch tests for evaluating ductile-brittle transition behavior of irradiated ferritic steels. J. Nucl. Mater. 150, 194–202 (1987). https://doi.org/10.1016/0022-3115(87)90075-4 

    Article  Google Scholar 

  7. T. Misawa, H. Sugawara, R. Miura, Y. Hamaguchi, Small specimen fracture toughness tests of HT-9 steel irradiated with protons. J. Nucl. Mater. 133–134, 313–316 (1985). https://doi.org/10.1016/0022-3115(85)90158-8

    Article  Google Scholar 

  8. I. Simonovski, S. Holmström, M. Bruchhausen, Small punch tensile testing of curved specimens: Finite element analysis and experiment. Int. J. Mech. Sci. 120, 204–213 (2017). https://doi.org/10.1016/j.ijmecsci.2016.11.029

    Article  Google Scholar 

  9. C. Rodríguez, I.I. Cuesta, M.L.L. Maspoch, F.J. Belzunce, Application of the miniature small punch test for the mechanical characterization of polymer materials. Theor. Appl. Fract. Mech. 86, 78–83 (2016). https://doi.org/10.1016/j.tafmec.2016.10.001

    Article  Google Scholar 

  10. D. Sánchez-Ávila, R. Barea, E. Martínez, J.R. Blasco, L. Portolés, F. Carreño, Determination of the instantaneous strain rate during small punch testing of 316 L stainless steel. Int. J. Mech. Sci. 149, 93–100 (2018). https://doi.org/10.1016/j.ijmecsci.2018.09.042

    Article  Google Scholar 

  11. X. Mao, H. Takahashi, Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø3 mm) small punch tests. J. Nucl. Mater. 150, 42–52 (1987). https://doi.org/10.1016/0022-3115(87)90092-4

    Article  Google Scholar 

  12. X. Mao, T. Shoji, H. Takahashi, Characterization of fracture behavior in small punch test by combined recrystallization-etch method and rigid plastic analysis. J. Test. Eval. 15, 30–37 (1987). https://doi.org/10.1520/JTE11549J 

    Article  Google Scholar 

  13. H. Takahashi, T. Shoji, X. Mao, Recommended practice for small punch (SP) testing of metallic materials, JAERI-M--88-172 (1988)

  14. C. Rodríguez, M. Fernández, J.G. Cabezas, T.E. García, F.J. Belzunce, The use of the small punch test to solve practical engineering problems. Theor. Appl. Fract. Mech. 86, 109–116 (2016). https://doi.org/10.1016/j.tafmec.2016.08.021

    Article  Google Scholar 

  15. M.A. Contreras, C. Rodríguez, F.J. Belzunce, C. Betegón, Use of the small punch test to determine the ductile-to-brittle transition temperature of structural steels. Fatigue Fract. Eng. Mater. Struct. 31, 727–737 (2008). https://doi.org/10.1111/j.1460-2695.2008.01259.x

    Article  Google Scholar 

  16. J. D. Parker, A. McMinn, and J. Foulds, Material sampling for the assessment of component integrity, PVP ASME 171, 223-230, (1989)

  17. P. Roberts, I. Dane, Scoop Sampling for Small Punch Test Method, Rolls-Royce Naval Marine. Present. to CEN/WS21-UNI, Milan (2004)

  18. J.C. Chica, P.M. Bravo Díez, M. Preciado Calzada, Improved correlation for elastic modulus prediction of metallic materials in the small punch test. Int. J. Mech. Sci. 134, 112–122 (2017). https://doi.org/10.1016/j.ijmecsci.2017.10.006

    Article  Google Scholar 

  19. M. Bruchhausen, S. Holmström, I. Simonovski, T. Austin, J.M. Lapetite, S. Ripplinger, F. de Haan, Recent developments in small punch testing: tensile properties and DBTT. Theor. Appl. Fract. Mech. 86, 2–10 (2016). https://doi.org/10.1016/j.tafmec.2016.09.012

    Article  Google Scholar 

  20. E. Fleury, J.S. Ha, Small punch tests to estimate the mechanical properties of steels for steam power plant: I. Mechanical strength. Int. J. Press. Vessels Pip. 75, 707–713 (1998). https://doi.org/10.1016/S0308-0161(98)00075-1

    Article  Google Scholar 

  21. J. Kameda, X. Mao, Small-punch and TEM-disc testing techniques and their application to characterization of radiation damage. J. Mater. Sci. 27, 983–989 (1992). https://doi.org/10.1007/BF01197651

    Article  Google Scholar 

  22. W.D. Pilkey, Formula for Stress, Strain, and Structural Matrices (Wiley Interscience, New York, 1994)

    MATH  Google Scholar 

  23. D. Drucker, Conventional and unconventional plastic response and representation. Appl. Mech. Rev. 41, 155–167 (1988). https://doi.org/10.1115/1.3151888

    Article  Google Scholar 

  24. N. Wang, Large plastic deformation of a circular sheet caused by punch stretching. J. Appl. Mech. Trans. ASME 37, 431–440 (1970). https://doi.org/10.1115/1.3408524

    Article  Google Scholar 

  25. G.E. Lucas, A. Okada, M. Kiritani, Parametric analysis of the disc bend test. J. Nucl. Mater. 141–143, 532–535 (1986). https://doi.org/10.1016/S0022-3115(86)80096-4

    Article  Google Scholar 

  26. T.E. García, C. Rodríguez, F.J. Belzunce, C. Suárez, Estimation of the mechanical properties of metallic materials by means of the small punch test. J. Alloys Compd. 582, 708–717 (2014). https://doi.org/10.1016/j.jallcom.2013.08.009

    Article  Google Scholar 

  27. Y. Ruan, P. Spätig, M. Victoria, Assessment of mechanical properties of the martensitic steel EUROFER97 by means of punch tests. J. Nucl. Mater. 307–311, 236–239 (2002). https://doi.org/10.1016/S0022-3115(02)01194-7

    Article  Google Scholar 

  28. E.N. Campitelli, P. Spätig, R. Bonadé, W. Hoffelner, M. Victoria, Assessment of the constitutive properties from small ball punch test: experiment and modeling. J. Nucl. Mater. 335, 366–378 (2004). https://doi.org/10.1016/j.jnucmat.2004.07.052

    Article  Google Scholar 

  29. K. Matocha, M. Filip, S. Stejskalova, Determination of critical temperature of brittleness TK0 by small punch tests, in Proceedings of COMAT2012—Recent Trends In Structural Materials (2012)

  30. E. Altstadt, H.E. Ge, V. Kuksenko, M. Serrano, M. Houska, M. Lasan, M. Bruchhausen, J.-M. Lapetite, Y. Dai, Critical evaluation of the small punch test as a screening procedure for mechanical properties. J. Nucl. Mater. 472, 186–195 (2016). https://doi.org/10.1016/j.jnucmat.2015.07.029

    Article  Google Scholar 

  31. A. Janča, J. Siegl, P. Haušild, Small punch test evaluation methods for material characterisation. J. Nucl. Mater. 481, 201–213 (2016). https://doi.org/10.1016/j.jnucmat.2016.09.015

    Article  Google Scholar 

  32. M.F. Moreno, Effects of thickness specimen on the evaluation of relationship between tensile properties and small punch testing parameters in metallic materials. Mater. Des. 157, 512–522 (2018). https://doi.org/10.1016/j.matdes.2018.07.065

    Article  Google Scholar 

  33. J. Peng, K. Li, Q. Dai, G. Gao, Y. Zhang, W. Cao, Estimation of mechanical strength for pre-strained 316L austenitic stainless steel by small punch test. Vacuum 160, 37–53 (2019). https://doi.org/10.1016/j.vacuum.2018.11.015

    Article  Google Scholar 

  34. S. Holmström, I. Simonovski, D. Baraldi, M. Bruchhausen, E. Altstadt, R. Delville, Developments in the estimation of tensile strength by small punch testing. Theor. Appl. Fract. Mech. 101, 25–34 (2019). https://doi.org/10.1016/j.tafmec.2019.01.020

    Article  Google Scholar 

  35. S. Haroush, E. Priel, D. Moreno, A. Busiba, I. Silverman, A. Turgeman, R. Shneck, Y. Gelbstein, Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Mater. Des. 83, 75–84 (2015). https://doi.org/10.1016/j.matdes.2015.05.049

    Article  Google Scholar 

  36. J. Calaf-chica, P. Miguel, B. Díez, M.P. Calzada, Optimization of the t/10 offset correlation method to obtain the yield strength with the small punch test. J. Nucl. Mater. 534, 152177 (2020). https://doi.org/10.1016/j.jnucmat.2020.152177

    Article  Google Scholar 

  37. M. Eskner, R. Sandstrom, Mechanical property evaluation using the small punch test. J. Test. Eval. 32, 1–8 (2004). https://doi.org/10.1520/JTE11504

    Article  Google Scholar 

  38. J. Calaf-Chica, M.S. Palomar, P.M.B. Díez, M.P. Calzada, Deviations in yield and ultimate tensile strength estimation with the small punch test: numerical analysis of pre-straining and Bauschinger effect influence. Mech. Mater. 153, 103696 (2021). https://doi.org/10.1016/J.MECHMAT.2020.103696

    Article  Google Scholar 

  39. J. Isselin, T. Shoji, Yield strength evaluation by small-punch test. J. Test. Eval. 37, 531–537 (2009). https://doi.org/10.1520/JTE101657

    Article  Google Scholar 

  40. I.I. Cuesta, C. Rodríguez, T.E. García, J.M. Alegre, Effect of confinement level on mechanical behaviour using the small punch test. Eng. Fail. Anal. 58, 206–211 (2015). https://doi.org/10.1016/j.engfailanal.2015.09.008

    Article  Google Scholar 

  41. V. Vorlicek, L. Exworthy, P.E. Flewitt, Evaluation of a miniaturized disc test for establishing the mechanical properties of low-alloy ferritic steels. J. Mater. Sci. 30, 2936–2943 (1995). https://doi.org/10.1007/BF00349666

    Article  Google Scholar 

  42. ANSYS Mechanical Enterprise, ANSYS Inc. (2019). https://www.ansys.com/en-in/products/structures/ansys-mechanical

  43. I. Simonovski, D. Baraldi, S. Holmström, E. Altstadt, R. Delville, M. Bruchhausen, Determining the ultimate tensile strength of fuel cladding tubes by small punch testing. J. Nucl. Mater. 509, 620–630 (2018). https://doi.org/10.1016/j.jnucmat.2018.07.041

    Article  Google Scholar 

  44. J. Chakrabarty, A theory of stretch forming over hemispherical punch heads. Int. J. Mech. Sci. 12, 315–325 (1970). https://doi.org/10.1016/0020-7403(70)90085-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pruthvish Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Patel, B.K. The Small Punch Test a Viable Alternate for In-service Components Preserved Strength Estimation. J. Inst. Eng. India Ser. C 103, 121–133 (2022). https://doi.org/10.1007/s40032-021-00728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-021-00728-1

Keywords

Navigation