Skip to main content
Log in

Instabilities of Decaying Flow in a Rectangular Channel

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Instabilities near the wall of a rectangular water channel in decaying freestream flow is investigated experimentally. A sliding piston imparts trapezoidal velocity variation (constant acceleration from rest, constant velocity, and constant deceleration to rest) onto the freestream in the channel. With the onset of deceleration, a space invariant unsteady wall jet like velocity profiles develop opposite to the flow direction as evident from particle image velocimetry (PIV) measurements. Strong shear and decaying velocity profiles with reverse flow are observed in the deceleration phase and after piston stops. Velocity profiles at this stage are found to be highly inflectional. Dye visualization shows that the outer layer becomes unstable resulting in the formation of array of vortices similar to Kelvin–Helmholtz vortices in shear layer instability. Secondary vortices of opposite sign evolve in the inner layer close to the wall due to the adverse pressure gradient induced by the primary vortices. Vortex formation is not observed below a critical value of Reynolds number. Due to decaying nature of the base flow, i.e., decreasing Reynolds number, the instability vortices do not break down to turbulent flow. The wavelength of instability vortices (\(\lambda \)) scales with the average boundary-layer thickness \({\bar{\delta }}\), the average being taken from start of reverse flow to appearance of a vortex. The ratio \(\lambda /{{\bar{\delta }}}\) is \(\sim 2.6\). The vortex formation time scales with the average convective time scale and is \(\sim 16/ (\overline{ \Delta u/ \delta })\), where \(\Delta u = u_{max} - u_{min} \) and \( u_{max}, u_{min} \), \(\delta \) are maximum velocity, minimum velocity, and boundary-layer thickness respectively of the base flow at any instant. Visualization in the transverse plane reveals vortical structures appear at later times after vortex formation in stream-wise direction indicating three dimensional flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. K.D. Von Ellenrieder, K. Parker, J. Soria, Fluid mechanics of flapping wings. Exp. Thermal Fluid Sci. 32(8), 1578–1589 (2008)

    Article  Google Scholar 

  2. S.A. Berger, L.D. Jou, Flows in stenotic vessels. Annu. Rev. Fluid Mech. 32, 347–382 (2000)

    Article  MathSciNet  Google Scholar 

  3. R. Mittal, S.P. Simmons, F. Najjar, Numerical study of pulsatile flow in a constricted channel. J. Fluid Mech. 485, 337–378 (2003)

    Article  Google Scholar 

  4. E.P. Valueva, M.S. Purdin, The pulsating laminar flow in a rectangular channel. Thermophys. Aeromech. 22(6), 733–744 (2015)

    Article  Google Scholar 

  5. A. Hacioglu, R. Narayanan, Oscillating flow and separation of species in rectangular channels. Phys. Fluids 28, 073602 (2016)

    Article  Google Scholar 

  6. E.N. Fales, A new laboratory technique for investigation of the origin of fluid turbulence. J. Franklin Inst. 259(6), 491–515 (1955)

    Article  Google Scholar 

  7. J.R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563 (1955)

    Article  Google Scholar 

  8. S. Uchida, The pulsating viscous flow superposed on the steady laminar motion of incompressible fluids in circular motion. Z. Angew. Math. Phys. 7, 403–422 (1956)

    Article  MathSciNet  Google Scholar 

  9. D. Das, J.H. Arakeri, Unsteady laminar duct flow with a given volume flow rate variation. J. Appl. Mech. 67, 274–281 (2000)

    Article  Google Scholar 

  10. S. Weinbaum, K.H. Parker, The laminar decay of suddenly blocked channel and pipe flows. J. Fluid Mech. 69, 729–752 (1975)

    Article  Google Scholar 

  11. M.S. Ghidaoui, A.A. Kolyshkin, A quasi-steady approach to the instability of time-dependent flows in pipes. J. Fluid Mech. 465, 301–330 (2002)

    Article  MathSciNet  Google Scholar 

  12. R.A. Bajura, A.A. Szewczyk, Experimental investigation of a laminar two dimensional plane wall jet. Phys. Fluids 13, 1653–1664 (1970)

    Article  Google Scholar 

  13. D.H. Chun, W.H. Schwarz, Stability of the plane incompressible viscous wall jet subjected to small disturbances. Phys. Fluids 10(5), 911–915 (1967)

    Article  Google Scholar 

  14. R.A. Bajura, M.R. Catalano, Transition in two dimensional plane wall jet. J. Fluid Mech. 70, 773–799 (1975)

    Article  Google Scholar 

  15. D. Das, J.H. Arakeri, Transition of unsteady velocity profiles with reverse flow. J. Fluid Mech. 374, 251–283 (1998)

    Article  MathSciNet  Google Scholar 

  16. S.P. Das, U. Srinivasan, J.H. Arakeri, Instabilities in unsteady boundary layers with reverse flow. Eur. J. Mech. B/Fluids 55, 49–62 (2016)

    Article  Google Scholar 

  17. W. Thielicke, E.J. Stamhuis, Pivlab—towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. J. Open Res. Softw. 2, e30 (2014). (10pp)

    Article  Google Scholar 

  18. P. Mele, M. Morganti, M. Scibilia, A. Lasek, Behavior of wall jet in laminar to turbulent transition. AIAA J. 24, 938–939 (1986)

    Article  Google Scholar 

  19. F.B. Hsiao, S.S. Sheu, Experimental studies on flow transition of a plane wall jet. Aeronaut. J. 100, 373–380 (1996)

    Google Scholar 

  20. S. Wernz, H.F. Fasel, Nonlinear resonances in a laminar wall jet: ejection of dipolar vortices. J. Fluid Mech. 588, 279–308 (2007)

    Article  Google Scholar 

  21. R. Akhavan, R.D. Kamm, A.H. Shapiro, An investigation of transition to turbulence in bounded oscillatory stokes flows part 2. Numerical simulations. J. Fluid Mech. 225, 423–444 (1991)

    Article  Google Scholar 

  22. P. Merkli, H. Thomann, Transition to turbulence in oscillating pipe flow. J. Fluid Mech. 68, 567–576 (1975)

    Article  Google Scholar 

  23. M. Gad-El-Hak, S.H. Davis, J.T. McMurray, S.A. Orszag, On the stability of the decelerating laminar boundary layer. J. Fluid Mech. 138, 297–323 (1984)

    Article  Google Scholar 

  24. C. Shih, L.M. Lourenco, A. Krothapalli, Investigation of flow at leading and trailing edges of pitching-up airfoil. AIAA J. 33, 1369–1376 (1995)

    Article  Google Scholar 

  25. J.J. Allen, T. Naitoh, Scaling and instability of a junction vortex. J. Fluid Mech. 574, 1–23 (2007)

    Article  Google Scholar 

  26. H.S. Rhee, J.R. Koseff, R.L. Street, Flow visualization of a recirculating flow by rheoscopic liquid and liquid crystal techniques. Exp. Fluids 2, 57–64 (1984)

    Article  Google Scholar 

  27. M.J. Vogel, A.H. Hirsa, J.M. Lopez, Spatio-temporal dynamics of a periodically driven cavity flow. J. Fluid Mech. 478, 197–226 (2003)

    Article  MathSciNet  Google Scholar 

  28. J.M. Floryan, W.S. Saric, Wavelength selection and growth of gortler vortices. AIAA J. 22, 1529–1538 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Center for Industrial Consultancy and Sponsored Research, Indian Institute of Technology Madras for the financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, N., Das, S.P. Instabilities of Decaying Flow in a Rectangular Channel. J. Inst. Eng. India Ser. C 101, 821–836 (2020). https://doi.org/10.1007/s40032-020-00590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-020-00590-7

Keywords

Navigation