Skip to main content
Log in

Kinematic and Dynamic Optimal Trajectory Planning of Industrial Robot Using Improved Multi-objective Ant Lion Optimizer

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In this paper, an optimal robotic trajectory planning subjected to kinematic and dynamic constraints has been described. The kinematic parameters like jerk and dynamic parameters like torque rate mainly influence the smoothness of the travel of robot end effector along the trajectory path. Therefore, these parameters are to be constrained for reducing the robot positional error, but it leads to vast increase in total travel time of robot which in the end affects the productivity. Therefore, an improved multi-objective ant lion optimization technique has been applied to obtain the optimal trajectory with minimization time-jerk–torque rate for a 6 axis Kawasaki RS06L industrial robot. After implementation of the algorithm, the torque rate and jerk have been reduced considerably and the total travel time before and after optimization has been found to be 34.38 s and 28.21 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.A. Ata, Optimal trajectory planning of manipulators: a review. J. Eng. Sci. Technol. 2, 32–54 (2007)

    Google Scholar 

  2. A. Rout, B.B.V.L. Deepak, B.B. Biswal, Advances in weld seam tracking techniques for robotic welding: a review. Robot. Comput. Integr. Manuf. 56, 12–37 (2019). https://doi.org/10.1016/j.rcim.2018.08.003

    Article  Google Scholar 

  3. C. Lin, P. Chang, J.Y.S. Luh, Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Trans. Autom. Control 28, 1066–1074 (1983)

    Article  Google Scholar 

  4. A. Gasparetto, V. Zanotto, A new method for smooth trajectory planning of robot manipulators. Mech. Mach. Theory 42, 455–471 (2007). https://doi.org/10.1016/j.mechmachtheory.2006.04.002

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Gasparetto, V. Zanotto, Optimal trajectory planning for industrial robots. Adv. Eng. Softw. 41, 548–556 (2010). https://doi.org/10.1016/j.advengsoft.2009.11.001

    Article  MATH  Google Scholar 

  6. A. Gasparetto, A. Lanzutti, R. Vidoni, V. Zanotto, Experimental validation and comparative analysis of optimal time-jerk algorithms for trajectory planning. Robot. Comput. Integr. Manuf. 28, 164–181 (2012). https://doi.org/10.1016/j.rcim.2011.08.003

    Article  Google Scholar 

  7. A. Piazzi, A. Visioli, An interval algorithm for minimum-jerk trajectory planning of robot manipulators, in Proceedings of the 36th IEEE Conference Decision Control, vol. 2 (1997), pp. 1924–1927. https://doi.org/10.1109/CDC.1997.657874

  8. A. Piazzi, A. Visioli, Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 47, 140–149 (2000)

    Article  Google Scholar 

  9. P. Huang, Y. Xu, B. Liang, Global minimum-jerk trajectory planning of space manipulator. Int. J. Control. Autom. Syst. 4, 405–413 (2006)

    Google Scholar 

  10. V. Zanotto, A. Gasparetto, A. Lanzutti et al., Experimental validation of minimum time-jerk algorithms for industrial robots. J. Intell. Robot. Syst. Theory. Appl. 64, 197–219 (2011). https://doi.org/10.1007/s10846-010-9533-5

    Article  Google Scholar 

  11. P. Huang, K. Chen, J. Yuan, Y. Xu, Motion trajectory planning of space manipulator for joint, in International Conference Mechatronics Automation 2007, ICMA (2007), pp. 3543–3548. https://doi.org/10.1109/ICMA.2007.4304134

  12. A. Rout, M. Dileep, G. Bihari et al., ScienceDirect Optimal time-jerk trajectory planning of 6 axis welding robot using TLBO method. Proc. Comput. Sci. 133, 537–544 (2018). https://doi.org/10.1016/j.procs.2018.07.067

    Article  Google Scholar 

  13. P. Huang, G. Liu, J. Yuan, Y. Xu (2008) Multi-objective optimal trajectory planning of space robot using particle swarm optimization. In: International Symposium on Neural Networks. Springer, Berlin, pp. 171–179

  14. H. Lin, A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization. J. Intell. Robot. Syst. Theory Appl. 75, 379–392 (2014). https://doi.org/10.1007/s10846-013-9982-8

    Article  Google Scholar 

  15. K.G. Shin, N.D. McKay, Minimum-time trajectory planning for industrial robots with general torque constraints, in IEEE International Conference on Robotics and Automation Proceedings (1986) , pp. 412–417

  16. C. Guarino, L. Bianco, A. Piazzi, Minimum-time trajectory planning of mechanical manipulators under dynamic constraints (2010), p. 7179. https://doi.org/10.1080/00207170210156161

  17. H.A. AI-Dois, A.K. Jha, R.B. Misra, Dynamic manipulability of 3-RRR planar manipulator. J. Inst. Eng. (India) Ser. C 93, 257–267 (2012). https://doi.org/10.1007/s40032-012-0024-2

    Article  Google Scholar 

  18. M. Chandrasekaran, S. Tamang, ANN–PSO integrated optimization methodology for intelligent control of MMC machining. J. Inst. Eng. Ser. C 98, 395–401 (2017). https://doi.org/10.1007/s40032-016-0276-3

    Article  Google Scholar 

  19. V. Muthukumar, A.S. Babu, R. Venkatasamy, N.S. Kumar, An accelerated particle swarm optimization algorithm on parametric optimization of WEDM of die-steel. J. Inst. Eng. (India) Ser. C 96, 49–56 (2015). https://doi.org/10.1007/s40032-014-0143-z

    Article  Google Scholar 

  20. S. Rajakumar, D. Ravindran, M. Sivakumar, Optimization of power coefficient of wind turbine using genetic algorithm. J. Inst. Eng. Ser. C 98, 111–118 (2017). https://doi.org/10.1007/s40032-016-0323-0

    Article  Google Scholar 

  21. R. Seshasai, S. Prasanth, K. Hans, Optimization of straight cylindrical turning using artificial bee colony (ABC) algorithm. J. Inst. Eng. Ser. C 98, 171–177 (2017). https://doi.org/10.1007/s40032-016-0263-8

    Article  Google Scholar 

  22. D.G.S. Chakraborty, A study on the optimization performance of fireworks and Cuckoo search algorithms in laser machining processes. J. Inst. Eng. Ser. C 96, 215–229 (2015). https://doi.org/10.1007/s40032-014-0160-y

    Article  Google Scholar 

  23. S. Mirjalili, P. Jangir, S. Saremi, Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. (2017). https://doi.org/10.1007/s10489-016-0825-8

    Article  Google Scholar 

  24. S. Mirjalili, The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  25. K. Deb, A robust evolutionary framework for multi-objective optimization, in Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. Atlanta, Georgia, USA, (2008), pp. 633–640

Download references

Acknowledgments

This research work is supported by Board of Research in Nuclear Sciences, Department of Atomic Energy, Govt. of India under Project ID BRNS/34034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amruta Rout.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, A., Mahanta, G.B., Bbvl, D. et al. Kinematic and Dynamic Optimal Trajectory Planning of Industrial Robot Using Improved Multi-objective Ant Lion Optimizer. J. Inst. Eng. India Ser. C 101, 559–569 (2020). https://doi.org/10.1007/s40032-020-00557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-020-00557-8

Keywords

Navigation