Skip to main content
Log in

Suppression of Tool Vibration in Boring Process: A Review

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In boring process, tool vibration is an important parameter which results in progressive tool wear, poor surface finish and cutting tool damage. This tool vibration was reduced by passive, semi-active and active techniques which are used by various researchers in the past. In this paper, various techniques employed to prevent tool vibration in boring operation are reviewed, analyzed and presented. It was inferred that the control of tool vibration was effective by utilizing appropriate damping mechanism in the boring process. Also, from the overall review of the literature, it was observed that as the tool wear started to progress, the tool vibration gets increased which leads to failure of the tool. In this review paper, scope of developing a damper where tool vibration can be suppressed by varying the damping ability based on requirement was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Lawrance, P. Sam Paul, A.S. Varadarajan, A.P. Praveen, X. Ajay Vasanth, Attenuation of vibration in boring tool using spring controlled impact damper. Int. J. Interact. Des. Manuf. 11(4), 903–915 (2017)

    Google Scholar 

  2. K.A. Risbood, U.S. Dixit, A.D. Sahasrabudhe, Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibration in turning process. J. Mater. Process. Technol. 132(1–3), 203–214 (2003)

    Google Scholar 

  3. F. Taylor, On the art of cutting metals. Trans. ASME 28, 150–156 (1907)

    Google Scholar 

  4. R.N. Arnold, Cutting tools research: report of subcommittee on carbide tools: the mechanism of tool vibration in the cutting of steel. Proc. Inst. Mech. Eng. 154(1), 261–284 (1946)

    Google Scholar 

  5. J. Tlusty, M. Polacek, The stability of machine tools against self-excited vibrations in machining, in Proceedings of the ASME International (1963)

  6. S.A. Tobias, W. Fishwick, The chatter of lathe tools under orthogonal cutting conditions. Trans. ASME 80, 1079–1088 (1958)

    Google Scholar 

  7. G. Quintana, J. Ciurana, Chatter in machining processes: a review. Int. J. Mach. Tools Manuf. 51(5), 363–376 (2011)

    Google Scholar 

  8. M. Wiercigroch, E. Budak, Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 359, 663–693 (2001)

    MATH  Google Scholar 

  9. B. Moetakef-Imani, N.Z. Yussefian, Dynamic simulation of boring process. Int. J. Mach. Tools Manuf. 49(14), 1096–1103 (2009)

    Google Scholar 

  10. P.J. Waghmare, R.V. Patil, G.S. Waghmare, A review on vibration mitigation of boring bar using passive damping techniques. Int. J. Res. Eng. Technol. 4(7), 138–141 (2015)

    Google Scholar 

  11. D.A. Harris, Noise Control Manual: Guidelines for Problem-Solving in the Industrial/Commercial Acoustical Environment (Springer, New York, 1991)

    Google Scholar 

  12. P. Sam Paul, A.S. Varadarajan, S. Mohanasundaram, Effect of magnetorheological fluid on tool wear during hard turning with minimal fluid application. Arch. Civ. Mech. Eng. 15(1), 124–132 (2015)

    Google Scholar 

  13. I. Lazoglu, F. Atabey, Y. Altintas, Dynamic of boring processes: part III—time domain. Int. J. Mach. Tools Manuf. 42(14), 1567–1576 (2002)

    Google Scholar 

  14. L. Andren, L. Hakansson, A. Brandt, I. Claesson, Identification of dynamic properties of boring bar vibrations in a continuous boring operation. Mech. Syst. Signal Process. 18(4), 869–901 (2004)

    Google Scholar 

  15. L. Andren, L. Hakansson, A. Brandt, I. Claesson, Identification of motion of cutting tool vibration in a continuous boring operation-correlation to structural properties. Mech. Syst. Signal Process. 18(4), 903–927 (2004)

    Google Scholar 

  16. H. Akesson, T. Smirnova, L. Hakansson, Analysis of dynamic properties of boring bars concerning different clamping conditions. Mech. Syst. Signal Process. 23(8), 2629–2647 (2009)

    Google Scholar 

  17. N.B.V. Lakshmi Kumari, S. IrfanSadaq, G. Prasana Kumar, Analysis of single point cutting tool of a lathe machine using FEA. Int. J. Eng. Trends Technol. 20(5), 214–217 (2015)

    Google Scholar 

  18. J.R. Baker, K.E. Rouch, Stability analysis of boring bars with asymmetry. Mach. Sci. Technol. Int. J. 6(1), 81–95 (2002)

    Google Scholar 

  19. D.E Gilsinn, M Davies, Multi-modal nonlinear dynamics in machine tool cutting processes, in 6th Conference on Nonlinear Vibrations, Stability, and Dynamics of Structures, Blacksburg, VA (1996)

  20. F. Atabey, I. Lazoglu, Y. Altintas, Mechanics of boring processes—part I. Int. J. Mach. Tools Manuf. 43(5), 463–476 (2003)

    Google Scholar 

  21. F. Atabey, I. Lazoglu, Y. Altintas, Mechanics of boring processes—part II—multi-insert boring heads. Int. J. Mach. Tools Manuf. 43(5), 477–484 (2003)

    Google Scholar 

  22. M. Siddhapura, R. Paurobally, A review of chatter vibration research in turning. Int. J. Mach. Tools Manuf. 16, 27–47 (2012)

    Google Scholar 

  23. D.E. Dimla Sr., The impact of cutting conditions on cutting forces and vibrations signals in turning with plane face geometry inserts. J. Mater. Process. Technol. 155-156, 1708–1715 (2004)

    Google Scholar 

  24. E. Budak, E. Ozlu, Analytical modeling of chatter stability in turning and boring operations: a multi-dimensional approach. CIRP Ann. 56(1), 401–404 (2007)

    Google Scholar 

  25. J. Yue, Creating a stability lobe diagram, in Proceedings of the IJMEInter Tech Conference, New Jersey (2006)

  26. F. Kuster, P.E. Gygax, Cutting dynamics and stability of boring bars. CIRP Ann. 39(1), 361–366 (1990)

    Google Scholar 

  27. E. Ozlu, E. Budak, Analytical modeling of chatter stability in turning and boring operations—part i: model development. J. Manuf. Sci. Eng. 129(4), 726–732 (2007)

    Google Scholar 

  28. E. Ozlu, E. Budak, Analytical modeling of chatter stability in turning and boring operations—part II: experimental verification. J. Manuf. Sci. Eng. 129(4), 733–739 (2007)

    Google Scholar 

  29. K. Sorby, Development and optimization of vibration-damped tool holders for high length-to-diameter boring operations. High Speed Mach. 2, 51–58 (2016)

    Google Scholar 

  30. C. Mei, Active regenerative chatter suppression during boring manufacturing process. Robot. Comput. Integr. Manuf. 21(2), 153–158 (2005)

    Google Scholar 

  31. E. Ozlu, E. Budak, Analytical stability models for turning and boring operations, in Proceedings of the Second CIRP International Conference on High Performance Cutting, Vancouver, Canada (2006)

  32. Y. Alammari, M. Sanati, T. Freiheit, S.S. Park, Investigation of boring bar dynamics for chatter suppression. Procedia Manuf. 1, 768–778 (2015)

    Google Scholar 

  33. C.V. Biju, M.S. Shunmugam, Development of a boring bar with magneto rheological fluid damping and assessment of its dynamic characteristics. J. Vib. Control 24(14), 3094–3106 (2018)

    Google Scholar 

  34. J.F. Rigal, C. Pupaza, C. Bedrin, A model for simulation of vibrations during boring operations of complex surfaces. CIRP Ann. 47(1), 51–54 (1998)

    Google Scholar 

  35. J.R. Baker, K.E. Rouch, Use of finite element structural models in analyzing machine tool chatter. Finite Elem. Anal. Des. 38(11), 1029–1046 (2002)

    MATH  Google Scholar 

  36. G. Urbikain, A. Fernandez, L.N. Lopez de Lacalle, M.E. Gutierrez, Stability lobes for general turning operations with slender tools in the tangential direction. Int. J. Mach. Tools Manuf. 67, 35–44 (2013)

    Google Scholar 

  37. M. Zaeh, D. Siedl, A new method for simulation of machining performance by integrating finite element and multi-body simulation for machine tools. CIRP Ann. 56(1), 383–386 (2007)

    Google Scholar 

  38. P. Sam Paul, G. Lawrance, R.K. Yadav, N.V. Mohankrishnan, N. Nair, X. Ajay Vasanth, Analysis of dynamic characteristics of boring tool holder. Procedia Mater. Sci. 5, 2283–2292 (2014)

    Google Scholar 

  39. P. Sam Paul, A.S. Varadarajan, R. Robinson Gnanadurai, Study on the influence of fluid application parameters on tool vibration and cutting performance during turning of hardened steel. Eng. Sci. Technol. Int. J. 19(1), 241–253 (2016)

    Google Scholar 

  40. P. Sam Paul, A.S. Varadarajan, Performance evaluation of hard turning of AISI 4340 steel with minimal fluid application in the presence of semi-solid lubricants. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227(7), 738–748 (2013)

    Google Scholar 

  41. K. Sorby, E. Sundseth, High-accuracy turning with slender boring bars. Adv. Manuf. 3(2), 105–110 (2015)

    Google Scholar 

  42. M.M. Sadek, B. Mills, Effect of gravity on the performance of an impact damper: part 1. Steady-state motion. J. Mech. Eng. Sci. 12(4), 268–277 (1970)

    Google Scholar 

  43. M.D. Thomas, W.A. Knight, M.M. Sadek, The impact damper as a method of improving cantilever boring bars. J. Eng. Ind. 97(3), 859–866 (1975)

    Google Scholar 

  44. C.N. Bapat, S. Sankar, Single unit impact damper in free and forced vibration. J. Sound Vib. 99(1), 85–94 (1985)

    Google Scholar 

  45. S. Ema, E. Marui, Suppression of chatter vibration of boring tools using impact dampers. Int. J. Mach. Tools Manuf. 40(8), 1141–1156 (2000)

    Google Scholar 

  46. K. Mao, M. Yu Wang, Z. Xu, T. Chen, DEM simulation of particle damping. Powder Technol. 142(2–3), 154–165 (2004)

    Google Scholar 

  47. R.D. Friend, V.K. Kinra, Particle impact damping. J. Sound Vib. 233(1), 93–118 (2000)

    Google Scholar 

  48. S.E. Olson, An analytical particle damping model. J. Sound Vib. 264(5), 1155–1166 (2003)

    Google Scholar 

  49. M. Saeki, Analytical study of multi-particle damping. J. Sound Vib. 281(3–5), 1133–1144 (2005)

    Google Scholar 

  50. Z. Xu, M. Yu Wang, T. Chenc, Particle damping for passive vibration suppression: numerical modeling and experimental investigation. J. Sound Vib. 279(3-5), 1097–1120 (2005)

    Google Scholar 

  51. M.S. Kumar, K.M. Mohanasundaram, B. Sathishkumar, A case study on vibration control in a boring bar using particle damping. Int. J. Eng. Sci. Technol. 3(8), 177–184 (2011)

    Google Scholar 

  52. S. Devaraj, D. Shivalingappa, J.R. Channankaiah, Surface quality enrichment using fine particle impact damper in boring operations. Int. J. Res. Eng. Technol. 3(2), 531–535 (2014)

    Google Scholar 

  53. C.V. Biju, M.S. Shunmugam, Investigation into effect of particle impact damping (PID) on surface topography in boring operation. Int. J. Adv. Manuf. Technol. 75(5-8), 1219–1231 (2014)

    Google Scholar 

  54. S. Chockalingam, U. Natarajan, A.G. Cyril, Damping investigation in boring bar using hybrid copper-zinc particles. J. Vib. Control 23(13), 2128–2134 (2017)

    Google Scholar 

  55. T.H. Kang, Chatter vibration in precision boring, in Machine Tool Development Production Engineering Resolution Conference ASME, Pittsburgh, pp. 171–189 (1963)

  56. D.G. Lee, N.P. Suh, Manufacturing and testing of chatter free boring bar. CIRP Ann. 37(1), 365–368 (1988)

    Google Scholar 

  57. D.G. Lee, H.Y. Hwang, J.K. Kim, Design and manufacturing of a carbon fiber epoxy rotating boring bar. Compos. Struct. 60(1), 115–124 (2003)

    Google Scholar 

  58. Q. Song, J. Shi, Z. Liu, Y. Wan, F. Xia, Boring bar with constrained layer damper for improving process stability. Int. J. Adv. Manuf. Technol. 83(9–12), 1951–1966 (2016)

    Google Scholar 

  59. J.H. Griffin, A review of friction damping of turbine blade vibration. Int. J. Turbo Jet-Engines 7(3–4), 297–397 (1990)

    Google Scholar 

  60. R.S. Hahn, Design of Lanchester damper for elimination of metal cutting chatter. Trans. ASME 73, 331–336 (1951)

    Google Scholar 

  61. E. Edhi, T. Hoshi, Stabilization of high frequency chatter vibration in fine boring by friction damper. Precis. Eng. 25(3), 224–234 (2001)

    Google Scholar 

  62. L.M. Jansen, S.J. Dyke, Semi-active control strategies for MR dampers: a comparative study. ASCE J. Eng. Mech. 126(8), 795–803 (2000)

    Google Scholar 

  63. M.D. Symans, M.C. Constantinou, Semi-active control systems for seismic protection of structures: a state-of-the-art review. Eng. Struct. 21(6), 469–487 (1999)

    Google Scholar 

  64. J. Liu, K. Liu, A tunable electromagnetic vibration absorber: characterization and application. J. Sound Vib. 295(3-5), 708–724 (2006)

    Google Scholar 

  65. E.I. Rivin, H. Kang, Improvement of machining conditions for slender parts by tuned dynamic stiffness of tool. Int. J. Mach. Tools Manuf. 29(3), 361–376 (1989)

    Google Scholar 

  66. H. Moradia, F. Bakhtiari-Nejadb, M.R. Movahhedya, A tunable vibration absorber design to suppress chatter in boring manufacturing process. Int. Mech. Eng. Congr. Expo. ASME 9, 1943–1950 (2007)

    Google Scholar 

  67. H. Moradia, F. Bakhtiari-Nejadb, M.R. Movahhedya, Tuneable vibration absorber design to suppress vibrations: an application in boring manufacturing process. J. Sound Vib. 318(1–2), 93–108 (2008)

    Google Scholar 

  68. L. Houck, T.L. Schmitz, K.S. Smith, A tuned holder for increased boring bar dynamic stiffness. J. Manuf. Process. 13(1), 24–29 (2011)

    Google Scholar 

  69. T. Mohanty, Surface quality improvement using modified tool clamping in boring operation. Int. J. Res. Eng. Sci. 1(8), 33–41 (2013)

    Google Scholar 

  70. K. Hudha, H. Jamaluddin, P.M. Samin, R.A. Rahman, Effects of control techniques and damper constraint on the performance of a semi-active magnetorheological damper. Int. J. Veh. Auton. Syst. 3(2–4), 230–252 (2005)

    Google Scholar 

  71. S. Rutten, Smart Materials in Automotive Applications (Technische Universiteit, Eindhoven, 2003)

    Google Scholar 

  72. K. Kim, K.F. Eman, S.M. Wu, In-process control of cylindricity in boring operations. J. Eng. Ind. 109(4), 291–296 (1987)

    Google Scholar 

  73. H. Tanaka, F. Obata, T. Matsubara, H. Mizumoto, Active chatter suppression of slender boring bar using piezoelectric actuators. JSME Int. J. Ser. C Dyn. Control Robot. Des. Manuf. 37(3), 601–606 (1994)

    Google Scholar 

  74. S.G. Tewani, K.E. Rouch, B.L. Walcott, A study of cutting process stability of a boring bar with active dynamic absorber. Int. J. Mach. Tool Manuf. 35(1), 91–108 (1995)

    Google Scholar 

  75. D.R. Browning, I. Golioto, N.B. Thompson, Active chatter control system for long-overhang boring bars. Proc. SPIE 3044, 270–280 (1997)

    Google Scholar 

  76. W.M. Chiu, K.W. Chan, Design and testing of piezoelectric actuator-controlled boring bar for active compensation of cutting force induced errors. Int. J. Prod. Econ. 51(1–2), 135–148 (1997)

    Google Scholar 

  77. W.M. Chiu, F.W. Lam, D. Gao, An overhung boring bar servo system for on-line correction of machining error. J. Mater. Process. Technol. 122(2–3), 286–292 (2002)

    Google Scholar 

  78. D. Gao, Y.X. Yao, W.M. Chiu, F.W. Lam, Accuracy enhancement of a small overhung boring bar servo system by real-time error compensation. Precis. Eng. 26(4), 456–459 (2002)

    Google Scholar 

  79. A. Katsukia, H. Onikura, T. Sajima, A. Mohri, T. Moriyama, Y. Hamano, H. Murakamic, Development of a practical high-performance laser-guided deep-hole boring tool: improvement in guiding strategy. Precis. Eng. 35(2), 221–227 (2011)

    Google Scholar 

  80. A. Matsubara, M. Maeda, I. Yamaji, Vibration suppression of boring bar by piezoelectric actuators and LR circuit. CIRP Ann. 63(1), 373–376 (2014)

    Google Scholar 

  81. G.P. O’Neal, B.K. Min, Z.J. Pasek, Y. Korean, Integrated structural/control design of micro-positioner for boring bar tool insert. J. Intell. Mater. Syst. Struct. 12(9), 617–627 (2001)

    Google Scholar 

  82. G.P. O’Neal, B.K. Min, C.J. Li, Z.J. Pasek, Y. Korean, P. Szuba, Precision piezoelectric micro-positioner for line boring bar tool insert. ASME Des. Eng. Div. 97, 99–106 (1998)

    Google Scholar 

  83. Y. Koren, Z.J. Pasek, P. Szuba, Design of a precision, agile line boring station. CIRP Ann. Manuf. Technol. 48(1), 313–316 (1999)

    Google Scholar 

  84. B.K. Min, G.P. O’Neal, Y. Koran, Z. Pasek, A smart boring tool for process control. Mechatronics 12(9–10), 1097–1114 (2002)

    Google Scholar 

  85. G. Haiqing, L.M. King, T.B. Cher, Influence of a locally applied electro-rheological fluid layer on vibration of a simple cantilever beam. J. Intell. Mater. Syst. Struct. 4(3), 379–384 (1993)

    Google Scholar 

  86. S.B. Choi, Vibration control of a flexible structure using ER dampers. J. Dyn. Syst. Meas. Control 121(1), 134–138 (1999)

    Google Scholar 

  87. M. Tomizawa, T. Aoyama, K. Tanaka, K. Sakurai, Suspension of tool shank vibration by electrorheological fluid dampers. Trans. Jpn. Soc. Mech. Eng. 64(622), 2287–2294 (1998)

    Google Scholar 

  88. T. Yakoh, T. Aoyama, Application of electro-rheological fluids to flexible mount and damper devices, in Proceeding of IEEE International Conference on Industrial Electronics, Control and Instrumentation, pp. 1815–1820 (2000)

  89. M. Wang, R. Fei, Improvement of machining stability using a tunable-stiffness boring bar containing an electrorheological fluid. Smart Mater. Struct. 8(4), 511–514 (1999)

    Google Scholar 

  90. M. Wang, R. Fei, Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids. Int. J. Mach. Tools Manuf. 39(12), 1925–1934 (1999)

    Google Scholar 

  91. M. Wang, R. Fei, On-line chatter detection and control in boring based on an electrorheological fluid. Mechatronics 11(7), 779–792 (2001)

    Google Scholar 

  92. M. Schwartz, Encyclopedia of Smart Materials (Wiley, New York, 2002)

    Google Scholar 

  93. P. Sam Paul, A.S. Varadarajan, X. AjayVasanth, G. Lawrance, Effect of magnetic field on damping ability of magnetorheological damper during hard turning. Arch. Civ. Mech. Eng. 14(3), 433–443 (2014)

    Google Scholar 

  94. P. Sam Paul, C.K. Shobhan Kumar, M. Joshua, S. Vignesh, S. Saravanan, A.S. Varadarajan, Study on the influence of magnetorheological fluid on tool vibration during end milling process. Int. J. Dyn. Control 5(3), 696–703 (2017)

    Google Scholar 

  95. D. Sathianarayanan, L. Karunamoorthy, J. Srinivasan, G.S. Kandasami, K. Palanikumar, Chatter suppression in boring operation using magnetorheological fluid damper. Mater. Manuf. Process. 23(4), 329–335 (2008)

    Google Scholar 

  96. D. Mei, T. Kong, A.J. Shih, Z. Chen, Magnetorheological fluid-controlled boring bar for chatter suppression. J. Mater. Process. Technol. 209(4), 1861–1870 (2009)

    Google Scholar 

  97. D. Mei, Z. Yao, T. Kong, Z. Chen, Parameter optimization of time-varying stiffness method for chatter suppression based on magnetorheological fluid-controlled boring bar. Int. J. Adv. Manuf. Technol. 46(9–12), 1071–1083 (2010)

    Google Scholar 

  98. Z. Yao, D. Mei, Z. Chen, Chatter suppression by parametric excitation: model and experiments. J. Sound Vib. 330(13), 2995–3005 (2011)

    Google Scholar 

  99. M.H. Salem, M.N. Anany, M. El-Habrouk, S.F. Rezeka, Control of a dynamic vibration absorber using a Magneto-Rheological Damper. Int. Rev. Mech. Eng. 7(1), 81–90 (2013)

    Google Scholar 

  100. D.S. Pour, S. Behbahani, Semi-active fuzzy control of machine tool chatter vibration using smart MR dampers. Int. J. Adv. Manuf. Technol. 83(1–4), 421–428 (2016)

    Google Scholar 

  101. E. Mohan, U. Natarajan, Experimental investigation on boring tool vibration control using MR fluid damper. J. Adv. Manuf. Syst. 15(1), 13–25 (2016)

    Google Scholar 

  102. G.P. Kumar, N. Seetharamaiah, B.D. Prasad, Improvement of surface quality using Magneto-Rheological Fluid (MRF) boring bar. Int. J. Dyn. Fluids 13(1), 29–46 (2017)

    Google Scholar 

  103. P. Sam Paul, A.S. Varadarajan, Effect of magneto rheological damper on tool vibration during hard turning. Front. Mech. Eng. 7(4), 410–416 (2012)

    Google Scholar 

  104. J.D. Carlson, M.R. Jolly, MR fluid, foam and elastomer device. Mechatronics 10(4–5), 555–569 (2000)

    Google Scholar 

  105. K.M. Popp, M. Kroger, W.H. Li, X.Z. Zhang, P.B. Kosasih, MRE properties under shear and squeeze modes and applications. J. Intell. Mater. Syst. Struct. 21(15), 1471–1477 (2010)

    Google Scholar 

  106. S.B. Kumbhar, S.S. Gawade, Lateral vibration control of a drill by using MR elastomer. Int. J. Eng. Technol. 1(5), 1–5 (2012)

    Google Scholar 

  107. G. Schubert, P. Harrison, Large-strain behaviour of Magneto-Rheological Elastomers tested under uniaxial compression and tension, and pure shear deformations. Polym. Test. 42, 122–134 (2015)

    Google Scholar 

  108. S.R. Khimi, K.L. Pickering, Comparison of dynamic properties of magnetorheological elastomers with existing antivibration rubbers. Compos. B Eng. 83, 175–183 (2015)

    Google Scholar 

  109. C. Collette, G. Kroll, G. Saive, V. Guillemier, M. Avraam, A. Premont, Isolation and damping properties of magnetorheological elastomers. J. Phys. Conf. Ser. 149(1), 1–4 (2009)

    Google Scholar 

  110. K. Danas, S.V. Kankanala, N. Triantafyllidis, Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Solids 60(1), 120–138 (2012)

    Google Scholar 

  111. B. Nayak, S.K. Dwivedy, K.S.R.K. Murthy, Multi-frequency excitation of magnetorheological elastomer-based sandwich beam with conductive skins. Int. J. Non-Linear Mech. 47(5), 448–460 (2012)

    Google Scholar 

  112. X. Zhang, S. Peng, W. Wen, W. Li, Analysis and fabrication of patterned magnetorheological fluid. Smart Mater. Struct. 17, 1–5 (2008)

    Google Scholar 

  113. H.X. Deng, X.L. Gong, Application of magnetorheological elastomer to vibration absorbers. Nonlinear Sci. Complex. 13, 462–470 (2006)

    MATH  Google Scholar 

  114. D. Xiao-min, Y.U. Miao, L. Chang-rong, C. Wei-min, A new variable stiffness absorber based on magneto-rheological elastomer. Trans. Nonferrous Met. Soc. China 19(3), s611–s615 (2009)

    Google Scholar 

  115. P. Sam Paul, A.S. Varadarajan, A multi-sensor fusion model based on an artificial neural network to predict tool wear during hard turning. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226(5), 853–860 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Department of Mechanical Engineering, Karunya Institute of Technology and Sciences for facilitating and supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sam Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrance, G., Sam Paul, P., Varadarajan, A.S. et al. Suppression of Tool Vibration in Boring Process: A Review. J. Inst. Eng. India Ser. C 100, 1053–1069 (2019). https://doi.org/10.1007/s40032-019-00531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-019-00531-z

Keywords

Navigation