Skip to main content
Log in

Equivalent Linearization of Bouc–Wen Hysteretic Model with Harmonic Input

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Equivalent linear stiffness and damping coefficient are calculated for the Bouc–Wen hysteretic model with the input as a harmonic function. Analytical estimates of these quantities are provided after constructing the hysteretic loops. For two cases, the hysteretic loops are found in closed form, and for the other cases limiting forms of the loops under high amplitude and low amplitude excitations are studied. Correct scaling laws for the equivalent parameters are derived analytically which are subsequently verified by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.T. Baber, Y.K. Wen, Random vibrating hysteretic degrading structures, in Proceedings, Third Engineering Mechanical Division Speciality Conference, Austin, Texas (1979), pp. 51–54

  2. M.C. Constantinou, I.G. Tadjbakhsh, Hysteretic damper in base isolation: random approach. J. Struct. Eng. 111(4), 705–721 (1985)

    Article  Google Scholar 

  3. J.W. Macki, P. Nistri, P. Zecca, Mathematical models for hysteresis. SIAM Rev. 35(1), 94–123 (1993)

    Article  MathSciNet  Google Scholar 

  4. R. Bouc, Forced vibration of mechanical systems with hysteresis (abstract), in Proceedings of the Fourth Conference on Nonlinear Oscillation, Prague (1967)

  5. Y.K. Wen, Approximate method for non-linear random vibration. J. Eng. Mech. 101, 389–401 (1975)

    Google Scholar 

  6. M. Ismail, F. Ikhouane, J. Rodellar, The hysteresis Bouc–Wen model, a survey. Arch. Comput. Methods Eng. 16, 161–188 (2009)

    Article  Google Scholar 

  7. F. Ikhouane, J. Rodellar, Systems with hysteresis: analysis, identification and control using Bouc–Wen model (Wiley, New York, 2007)

    Book  Google Scholar 

  8. F. Ikhouane, V. Manosa, J. Rodellar, Bounded and dissipative solutions of the Bouc–Wen model for hysteresis structural systems, in Proceedings of American Control Conference, Boston (2004), pp. 3520–3524

  9. F. Ikhouane, J.E. Hurtado, J. Rodellar, Variation of the hysteresis loop with the Bouc–Wen model parameters. Nonlinear Dyn. 48(4), 361–380 (2007)

    Article  MathSciNet  Google Scholar 

  10. F. Ikhouane, V. Manosa, J. Rodellar, Dynamic properties of the hysteretic Bouc–Wen model. Syst. Control Lett. 56, 197–205 (2007)

    Article  MathSciNet  Google Scholar 

  11. A.E. Charalampakis, V.K. Koumousis, On the response of dissipated energy of Bouc–Wen hysteretic model. J. Sound Vib. 309, 887–895 (2008)

    Article  Google Scholar 

  12. A. Bhattacharjee, A. Chatterjee, Dissipation in the Bouc–Wen Model: small amplitude, large amplitude and two-frequency forcing. J. Sound Vib. 332, 1807–1819 (2013)

    Article  Google Scholar 

  13. S. Dutta, G. Chakraborty, Performance analysis of nonlinear vibration isolator with magneto-rheological damper. J. Sound Vib. 333(20), 5097–5114 (2014)

    Article  Google Scholar 

  14. C.W. Wong, Y.Q. Ni, S.L. Lau, Steady-state oscillation of hysteretic differential model I: response analysis. ASCE J. Eng. Mech. 120(11), 2271–2298 (1994)

    Article  Google Scholar 

  15. H.-G. Li, G. Meng, Nonlinear dynamics of a SDOF oscillator with Bouc–Wen hysteresis. Chaos Solitons Fractals 34, 337–343 (2007)

    Article  Google Scholar 

  16. T.K. Caughey, Equivalent linearization techniques. J. Acoust. Soc. Am. 35, 1701–1711 (1963)

    MathSciNet  Google Scholar 

  17. J.E. Hurtado, A.H. Barbat, Equivalent linearization of the Bouc–Wen Hysteretic model. Eng. Struct. 22, 1121–1132 (2000)

    Article  Google Scholar 

  18. H. Jalili, An alternative linearization approach applicable to hysteretic systems. Commun. Nonlinear Sci. Numer. Simul. 19, 245–257 (2014)

    Article  MathSciNet  Google Scholar 

  19. Y. Shen, M.F. Golnaraghi, G.R. Heppler, Analytical and experimental study of the response of a suspension system with a magnetorheological damper. J. Intell. Mater. Syst. Struct. 16, 135–147 (2005)

    Article  Google Scholar 

  20. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, London, 2000)

    MATH  Google Scholar 

Download references

Acknowledgement

The author wishes to gratefully acknowledge the help taken from Mr. Sourav Ganguly of Jadavpur University, India, in carrying out numerical simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Bouc–Wen Hysteretic Loop for n = 2

The loop consists of the following branches:

  1. 1.

    Branch-I\(\left( { - \varDelta \le x \le a;\quad x^{\prime} > 0} \right)\)

    $$r = \sqrt {\frac{1}{{\left( {\beta + \gamma } \right)}}} \tanh \left\{ {\left( {x + \varDelta } \right)\sqrt {\beta + \gamma } } \right\},$$
    (52a)
  2. 2.

    Branch-II\(\left( {\varDelta \le x \le a;\quad x^{\prime} < 0} \right)\)

    $$\begin{aligned} & r = \sqrt {\frac{1}{{\left( {\beta - \gamma } \right)}}} \tan \left\{ {\left( {x - \varDelta } \right)\sqrt {\beta - \gamma } } \right\}\quad ({\text{if}}\;\beta \ne \gamma ) \\ & {\text{or}}\;r = x - \varDelta \quad ({\text{if}}\;\beta = \gamma ) \\ \end{aligned}$$
    (52b)
  3. 3.

    Branch-III\(\left( { - a \le x \le \varDelta ;\quad x^{\prime} < 0} \right)\)

    $$r = \sqrt {\frac{1}{{\left( {\beta + \gamma } \right)}}} \tanh \left\{ {\left( {x - \varDelta } \right)\sqrt {\beta + \gamma } } \right\},$$
    (52c)
  4. 4.

    Branch-IV\(\left( { - a \le x \le - \varDelta ;\quad x^{\prime} > 0} \right)\)

    $$\begin{aligned} & r = \sqrt {\frac{1}{{\left( {\beta - \gamma } \right)}}} \tan \left\{ {\left( {x + \varDelta } \right)\sqrt {\beta - \gamma } } \right\}\quad ({\text{if}}\;\beta \ne \gamma ) \\ & {\text{or}}\;r = x + \varDelta \quad ({\text{if}}\;\beta = \gamma ) \\ \end{aligned}$$
    (52d)

    where \(\varDelta\) is obtained by solving the following equation

    $$\tanh \left\{ {\left( {a + \varDelta } \right)\sqrt {\beta + \gamma } } \right\} = \sqrt {\frac{\beta + \gamma }{\beta - \gamma }} \tan \left\{ {\left( {a - \varDelta } \right)\sqrt {\beta - \gamma } } \right\}\quad {\text{if}}\;\beta \ne \gamma$$
    (53)

    or

    $$\tanh \left\{ {\left( {a + \varDelta } \right)\sqrt {2\beta } } \right\} = \sqrt {2\beta } \left( {a - \varDelta } \right)\quad {\text{if}}\;\beta = \gamma$$
    (53')

It can be seen that branch-I and branch-III are asymptotic to \(r = \sqrt {\frac{1}{\beta + \gamma }}\) and \(r = - \sqrt {\frac{1}{\beta + \gamma }}\), respectively. The variation in the shape and size of the loop follows the same trend as in the previous case. For small value of the amplitude a, branch-I and branch-II can be approximately written as

$${\text{Branch - I:}}\quad r(x) = (\varDelta + x) - \frac{1}{3}\left( {\varDelta + x} \right)^{3} \left( {\beta + \gamma } \right)$$
(54)
$${\text{Branch - II:}}\quad r(x) = (x - \varDelta ) + \frac{1}{3}\left( {x - \varDelta } \right)^{3} \left( {\beta - \gamma } \right)$$
(55)

Here \(\varDelta\) satisfies the following equation

$$\varDelta = \frac{\beta }{3}\left( {a^{3} + 3a\varDelta^{2} } \right) + \frac{\gamma }{3}\left( {3a^{2} \varDelta + \varDelta^{3} } \right).$$
(56)

When a is small, the approximate solution is \(\varDelta \approx \frac{\beta }{3}a^{3}\).

For large value of a, Eqs. (53) and (53′) can be written approximately as

$$\varDelta = a - \frac{1}{{\sqrt {\beta - \gamma } }}\tan^{ - 1} \left\{ {\sqrt {\frac{\beta - \gamma }{\beta + \gamma }} } \right\}\quad {\text{if }}\; \, \beta \ne \gamma$$
(57)

and

$$\varDelta = a - \frac{1}{{\sqrt {2\beta } }}\quad {\text{if}}\; \, \beta = \gamma ,$$
(57')

respectively. The shape of the loop becomes nearly rectangular.

Appendix 2

The functions appearing in Eq. 24(a)–(d), obtained after carrying out integration [20], are as follows:

$$F_{1} \left( x \right) = - \frac{2}{n}\mathop \sum \limits_{k = 0}^{{k = \frac{n}{2} - 1}} \left\{ {P_{k} \cos \left( {\frac{2k + 1}{n}\pi } \right) - Q_{k} \sin \left( {\frac{2k + 1}{n}\pi } \right)} \right\},$$

for n positive even number and

$$F_{1} \left( x \right) = \frac{1}{n}\ln \left( {1 + x} \right) - \frac{2}{n}\mathop \sum \limits_{k = 0}^{{k = \frac{n - 3}{2}}} \left\{ {P_{k} \cos \left( {\frac{2k + 1}{n}\pi } \right) - Q_{k} \sin \left( {\frac{2k + 1}{n}\pi } \right)} \right\}$$

For n even, where

$$P_{k} = \frac{1}{2}\ln \left( {x^{2} - 2x\cos \left( {\frac{2k + 1}{n}\pi } \right) + 1} \right)\;{\text{and}}\;Q_{k} = \tan^{ - 1} \left[ {\frac{{x\sin \left( {\frac{2k + 1}{n}} \right)\pi }}{{1 - x\cos \left( {\frac{2k + 1}{n}} \right)\pi }}} \right].$$
$$F_{2} \left( x \right) = \frac{1}{n}\ln \frac{1 + x}{1 - x} - \frac{2}{n}\mathop \sum \limits_{k = 1}^{{k = \frac{n}{2} - 1}} \left\{ {P_{k} \cos \frac{2k}{n}\pi - Q_{k} \sin \frac{2k}{n}\pi } \right\}$$

for n even where

$$P_{k} = \frac{1}{2}\ln \left( {x^{2} + 2x\cos \left( {\frac{2k + 1}{n}\pi } \right) + 1} \right)\;{\text{and}}\;Q_{k} = \tan^{ - 1} \left[ {\frac{{x + \cos \left( {\frac{2k + 1}{n}\pi } \right)}}{{\sin \left( {\frac{2k + 1}{n}\pi } \right)}}} \right]$$

and

$$F_{2} \left( x \right) = - \frac{1}{n}\ln \left( {1 - x} \right) + \frac{2}{n}\mathop \sum \limits_{k = 0}^{{k = \frac{n - 3}{2}}} \left\{ {P_{k} \cos \left( {\frac{2k + 1}{n}\pi } \right) + Q_{k} \sin \left( {\frac{2k + 1}{n}\pi } \right)} \right\}$$

for n odd where

$$P_{k} = \frac{1}{2}\ln \left( {x^{2} - 2x\cos \frac{2k}{n}\pi + 1} \right)\;{\text{and}}\;Q_{k} = \tan^{ - 1} \left[ {\frac{{x - \cos \frac{2k}{n}\pi }}{{\sin \frac{2k}{n}\pi }}} \right].$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, G. Equivalent Linearization of Bouc–Wen Hysteretic Model with Harmonic Input. J. Inst. Eng. India Ser. C 100, 907–918 (2019). https://doi.org/10.1007/s40032-019-00506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-019-00506-0

Keywords

Navigation