Skip to main content
Log in

Assessment of Tribological Performance of Al-Coconut Shell Ash Particulate—MMCs using Grey-Fuzzy Approach

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

This paper deals with optimization of wear behaviour on aluminium metal matrix composites (AMC) filler by coconut shell ash (CSA) on pin-on-disc setup. The Al-CSA composites are fabricated with various volume percentages such as 5, 10 and 15% of CSA using compo casting technique. The properties of Al-CSA composites have been improve with increasing volume of CSA in base matrix. The experiments are carried out with three process parameters: load, percentage of CSA and sliding distance; and three adequate responses: wear (µm), wear rate (mm3/m) and coefficient of friction. This studied, a hybrid approach (that is, Grey-fuzzy) has been applied to optimizing the several responses. The fuzzy logic concept has been used for handling the uncertainty in the decision-making process. Analysis of variance (ANOVA) shown that the highest influencing parameter is load, followed with sliding distance and percentage of CSAp to the overall tribological performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.K. Surappa, Aluminium matrix composites: challenges and opportunities. Sadhana 28(Part 1 & 2), 319–334 (2003)

    Article  Google Scholar 

  2. C. Zweben, Metal-matrix composites for electronic packaging. JOM 44(7), 15–23 (1992)

    Article  Google Scholar 

  3. M.I. Pech-Canul, Aluminum Alloys for Al/SiC Composites, Recent Trends Process Degradation of Aluminium Alloys, ed. by Z. Ahmad, Intech, New York, 299–314, 2011

  4. P.K. Rohatgi, Metal-matrix composites. Def. Sci. J. 43(4), 323–349 (1993)

    Article  Google Scholar 

  5. T.P.D. Rajan, R.M. Pillai, B.C. Pai, K.G. Satyanarayana, P.K. Rohatgi, Fabrication and characterisation of Al–7Si–0.35 Mg/flyash metal matrix composites processed by different stir casting routes. Compos. Sci. Technol. 67, 3369–3377 (2007)

    Article  Google Scholar 

  6. R.N. Rao, S. Das, Effect of applied pressure on the tribological behaviour of SiCp reinforced AA2024 alloy. Tribiol. Int. 44(4), 454–462 (2011)

    Article  Google Scholar 

  7. Y. Sahin, Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis. Mater. Des. 24(2), 95–103 (2003)

    Article  MathSciNet  Google Scholar 

  8. K. Laden, J.D. Gu, M. Watremez, J.P. Bricout, Frictional characteristics of Al–SiC composite brake discs. Tribol. Lett. 8, 237–247 (2000)

    Article  Google Scholar 

  9. M. Kök, K. Özdin, Wear resistance of aluminium alloy and its composites reinforced by Al2O3 particles. J. Mater. Process. Technol. 183(2–3), 301–309 (2007)

    Article  Google Scholar 

  10. S. Gopalakrishnan, N. Murugan, Prediction of tensile strength of friction stir welded aluminium matrix TiCp particulate reinforced composite. Mater. Des. 32(1), 462–467 (2011)

    Article  Google Scholar 

  11. S.M. Subramanian, J. Vijayan, V. Muthaiah, Tribological wear behaviour and hardness measurement of SiC, Al2O3 reinforced Al. Matrix hybrid composite. J. Inst. Eng. Ser. D. 98(2), 291–296 (2017)

    Article  Google Scholar 

  12. B.S. Ünlü, Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al composites manufactured by casting or P/M method. Mater. Des. 29, 2002–2008 (2008)

    Article  Google Scholar 

  13. N. Altinkok, I. Özsert, F. Findik, Dry sliding wear behavior of Al2O3/SiC particle reinforced aluminium based MMCs fabricated by stir casting method. Acta Phys. Pol., A 124(1), 11–19 (2013)

    Article  Google Scholar 

  14. S. Suresha, B.K. Sridhara, Effect of silicon carbide particulates on wear resistance of graphitic aluminium matrix composites. Mater. Des. 31(9), 4470–4477 (2010)

    Article  Google Scholar 

  15. P. Ravindran, K. Manisekar, P. Narayanasamy, N. Selvakumar, R. Narayanasamy, Application of factorial techniques to study the wear of Al hybrid composites with graphite addition. Mater. Des. 39, 42–54 (2012)

    Article  Google Scholar 

  16. P.K. Rohatgi, R.Q. Guo, P. Huang, S. Ray, Friction and abrasion resistance of cast aluminum alloy-fly ash composites. Metall. Mater. Trans. A 28A, 245–250 (1997)

    Article  Google Scholar 

  17. R. Govindarao, R.I. Ganguly, R.R. Dash, P.S.P. Rao, G.S. Reddy, S.K. Singh, Development of a novel aluminium based metal matrix composite using insitu ternary mixture (Al2O3–SiC–C) Prepared by thermal treatment of fly-ash. Trans. Indian Inst. Metals 68(5), 951–958 (2015)

    Article  Google Scholar 

  18. Sudarshan, M.K. Surappa, Dry sliding wear of fly ash particle reinforced A356 Al composites. Wear 265, 349–360 (2008)

    Article  Google Scholar 

  19. J.B. Rao, D.V. Rao, K.S. Prasad, N.R.M.R. Bhargava, Dry sliding wear behaviour of fly ash particles reinforced AA 2024 composites. Mater. Sci. 30(3), 204–211 (2012)

    Google Scholar 

  20. N. Prasad, H. Sutar, S.C. Mishra, S.K. Sahoo, S.K. Acharya, Dry sliding wear behavior of aluminium matrix composite using red mud an industrial waste. Int. Res. J. Pure Appl. Chem. 3(1), 59–74 (2013)

    Article  Google Scholar 

  21. S.B. Venkata Siva, R.I. Ganguly, G. Srinivasa Rao, K.L. Sahoo, Quantitative studies on wear behavior of Al–(Al2O3–SiC–C) composite prepared with in situ ceramic composite developed from colliery waste. J. Eng. Tribol. 229(7), 823–834 (2015)

    Google Scholar 

  22. S.B. Venkata Siva, R.I. Ganguly, G. Srinivasa Rao, K.L. Sahoo, Wear behaviour of novel Al based composite reinforced with ceramic composite (Al2O3–SiC–C) developed from colliery shale material. Tribol. Mater. Surf. Interfaces 8(3), 117–124 (2014)

    Article  Google Scholar 

  23. K.K. Alaneme, I.B. Akintunde, P.A. Olubambi, T.M. Adewale, Fabrication characteristics and mechanical behaviour of rice husk ash—alumina reinforced Al–Mg–Si alloy matrix hybrid composites. J. Mater. Res. Technol. 2(1), 60–67 (2013)

    Article  Google Scholar 

  24. R.S.S. Raju, M.K. Panigrahi, R.I. Ganguly, G. Srinivasa Rao, Investigation of Tribological Performance of Hybrid Aluminium Metal Matrix Composite, in 31st Indian Engineering Congress, ed. by N. Senpupta (Technical, Allied Publishers Pvt. Ltd, Kolkata, 2016), pp. 241–245

    Google Scholar 

  25. R. Siva Sankar Raju, G. Srinivasa Rao, M. Muralidhara Rao, Optimization of machinability properties on aluminium metal matrix composite prepared by in situ ceramic mixture using coconut shell ash-Taguchi approach. Int. J. Concept. Mech. Civ. Eng. 3(2), 17–21 (2015)

    Google Scholar 

  26. S.Y. Aku, D.S. Yawas, A. Apasi, Evaluation of cast Al–Si–Fe alloy/coconut shell ash particulate composites. Gazi Univ. J. Sci. 26(3), 449–457 (2013)

    Google Scholar 

  27. A. Apasi, P.B. Madakson, D.S. Yawas, V.S. Aigbodion, Tribology in industry wear behaviour of Al–Si–Fe alloy/coconut shell ash particulate composites. Tribol. Ind. 34(1), 36–43 (2012)

    Google Scholar 

  28. V.S. Aigbodion, S.B. Hassan, E.T. Dauda, R.A. Mohammed, Experimental study of ageing behaviour of Al–Cu–Mg/bagasse ash particulate composites. Tribol. Ind. 33(1), 28–35 (2011)

    Google Scholar 

  29. B. Biswas, S. Chabri, B.C. Mitra, N.R. Bandyopadhyay, A. Sinha, Mechanical behaviour of aluminium dispersed unsaturated polyester/jute composites for structural applications. J. Inst. Eng. Ser. C. (2016). doi:10.1007/s40032-016-0329-7

    Article  Google Scholar 

  30. C.U. Atuanya, A.O.A. Ibhadode, I.M. Dagwa, Effects of breadfruit seed hull ash on the microstructures and properties of Al–Si–Fe alloy/breadfruit seed hull ash particulate composites. Results Phys. 2, 142–149 (2012)

    Article  Google Scholar 

  31. Y. Sahin, Tribological behaviour of metal matrix and its composite. Mater. Des. 28, 1348–1352 (2007)

    Article  Google Scholar 

  32. R. Siriyala, G.K. Alluru, R. Penmetsa, M. Duraiselvam, Application of grey-Taguchi method for optimization of dry sliding wear properties of aluminum MMCs. Front. Mech. Eng. 7(3), 279–287 (2012)

    Article  Google Scholar 

  33. A. Bendell, J. Disney, W.A. Pridmore, Reviewed work: Taguchi methods: applications in world industry. Interfaces 21(2), 99–101 (1991)

    Google Scholar 

  34. G. Taguchi, Introduction to quality engineering: designing quality into products and processes, vol. 4, 2nd edn. (Asian Productivity Organization, Tokyo, 1986), p. 191

  35. S.R. Chauhan, K. Dass, Dry sliding wear behaviour of titanium (grade 5) alloy by using response surface methodology. Adv. Tribol. Article ID 9 (2013)

  36. A. Baradeswaran, S.C. Vettivel, A.E. Perumal, N. Selvakumar, R.F. Issac, Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites. Mater. Des. 63, 620–632 (2014)

    Article  Google Scholar 

  37. J. Sudeepan, K. Kumar, T.K. Barman, P. Sahoo, Mechanical and tribological behavior of ABS/TiO2 polymer composites and optimization of tribological properties using Grey relational analysis. J. Inst. Eng. Ser. C 97(1), 41–53 (2015)

    Article  Google Scholar 

  38. T. Rajmohan, K. Palanikumar, M. Kathirvel, Optimization of machining parameters in drilling hybrid aluminium metal matrix composites. Trans. Nonferrous Metals Soc. China 22, 1286–1297 (2012)

    Article  Google Scholar 

  39. D. Julong, Introduction to grey system theory. J. Grey Syst. 1, 1–24 (1989)

    MathSciNet  MATH  Google Scholar 

  40. G. Cheng, Y. Xiaoyong, A programming of genetic algorithm in Matlab 7.0. Mod. Appl. Sci. 5(1), 230–235 (2011)

    Google Scholar 

  41. S.B. Raja, N. Baskar, Expert systems with applications application of particle swarm optimization technique for achieving desired milled surface roughness in minimum machining time. Expert Syst. Appl. 39(5), 5982–5989 (2012)

    Article  Google Scholar 

  42. M. Azadi, M. Farhad, Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts. J. Ind. Eng. Int. 12(2), 199–209 (2016)

    Article  Google Scholar 

  43. R. Venkata Rao, V. Patel, An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Sci. Iran. 20(3), 710–720 (2013)

    Google Scholar 

  44. A.K. Mishra, R.K. Srivastava, Wear behaviour of Al-6061/SiC metal matrix composites. J. Inst. Eng. Ser. C. (2016). doi:10.1007/s40032-016-0284-3

    Article  Google Scholar 

  45. T.R. Bement, Taguchi techniques for quality engineering. Technometrics 31(2), 253–255 (1989)

    Article  Google Scholar 

  46. T. Rajmohan, K. Palanikumar, S. Prakash, Grey-fuzzy algorithm to optimise machining parameters in drilling of hybrid metal matrix composites. Compos. Part B 50, 297–308 (2013)

    Article  Google Scholar 

  47. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  48. T.J. Ross, Fuzzy Logic with Engineering Applications, 2nd edn. (Wiley, Hoboken, 2004)

  49. Y.-S. Yang, W. Huang, A Grey-fuzzy Taguchi approach for optimizing multi-objective properties of zirconium-containing diamond-like carbon coatings. Expert Syst. Appl. 39(1), 743–750 (2012)

    Article  Google Scholar 

  50. A. Mukhopadhyay, S. Duari, T.K. Barman, P. Sahoo, Tribological performance optimization of electroless Ni–B coating under lubricated condition using hybrid Grey-fuzzy logic. J. Inst. Eng. Ser. D. 97(2), 215–231 (2016)

    Article  Google Scholar 

  51. M. Kenny, T. Oates, M. Kenny, T. Oates, Ullmann’s Encyclopedia of Industrial Chemistry. Lime and Limestone, ed. by B. Elvers (Wiley-VCH; Germany, 2007)

  52. M.A. Baghchesara, H. Abdizadeh, H.R. Baharvandi, Effects of MgO nano particles on microstructural and mechanical properties of aluminum matrix composite prepared via powder metallurgy route. Int. J. Mod. Phys. Conf. Ser. 5, 607–614 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivasankara Raju Rallabandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rallabandi, S.R., Srinivasa Rao, G. Assessment of Tribological Performance of Al-Coconut Shell Ash Particulate—MMCs using Grey-Fuzzy Approach. J. Inst. Eng. India Ser. C 100, 13–22 (2019). https://doi.org/10.1007/s40032-017-0388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-017-0388-4

Keywords

Navigation