Skip to main content

Advertisement

Log in

Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5–40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Kamo, W. Bryzik, Cummins-TARADCOM adiabatic turbocompound engine program, SAE Technical Paper 810070 (1981). doi:10.4271/810070

  2. R. Kamo, W. Bryzik, Cummins/TACOM advanced adiabatic engine, SAE Technical Paper 840428 (1984) doi:10.4271/840428

  3. W. Bryzik, R. Kamo, TACOM/Cummins adiabatic engine program, SAE Technical Paper 830314 (1983). doi:10.4271/830314

  4. R. Kamo, W. Bryzik, Ceramics in heat engines, SAE Technical Paper 790645 (1979). doi:10.4271/790645

  5. A. Modi, D. Patel, Experimental study on LHR diesel engine performance with blends of diesel and neem biodiesel, SAE Technical Paper 2015–26-0052 (2015). doi:10.4271/2015-26-0052

  6. A. Modi, Experimental study of energy balance in low heat rejection diesel engine, SAE Technical Paper 2012–01-0389 (2012). doi:10.4271/2012-01-0389

  7. A.J. Modi, D.C. Gosai, Experimental analysis of performance of low heat rejection (LHR) diesel engine. Int. J. Adv. Therm. Sci. Eng. 1(1), 17–25 (2010)

    Google Scholar 

  8. A. Modi, D. Gosai, Experimental study on low heat rejection diesel engine performance with blends of diesel and palm biodiesel. SAE Int. J. Fuels Lubr. 3(2), 246–259 (2010). doi:10.4271/2010-01-1519

    Article  Google Scholar 

  9. A.J. Modi, D.C. Gosai, Experimental analysis of performance of bio-fuels (neem and palm bio-diesel) on low heat rejection (LHR) diesel engine, Proceedings of Third International Conference of Advances in Mechanical Engineering. (ICAME-2010), S. V. National Institute of Technology, Surat, Gujarat, Jan 4–6 (2010)

  10. D.C. Gosai, H.J. Nagarsheth, Performance and exhaust emission studies of an adiabatic engine with optimum cooling. Procedia Technol 14, 413–421 (2014). doi:10.1016/j.protcy.2014.08.053

    Article  Google Scholar 

  11. S. Jaichandar, P. Tamilporai, Low heat rejection engines—an overview, SAE Technical Paper 2003–01-0405 (2003). doi:10.4271/2003-01-0405

  12. C. Haşimoğlu, M. Ciniviz, İ. Özsert, Y. İçingür, A. Parlak, M. Sahir Salman, Performance characteristics of a low heat rejection diesel engine operating with biodiesel. Renew. Energy 33(7), 1709–1715 (2008). doi:10.1016/j.renene.2007.08.002

    Article  Google Scholar 

  13. S. Madhusudhana, D. Kanakaraja, P. Surendra, A. Srinivas, Insulation effect on the performance of a low heat rejection DI diesel engine, Int. J. Eng. Technol. Manag. Appl. Sci. 3(2) (2015). ISSN: 2349-4476

  14. S. Sunil Kumar Reddy, V. Pandurangadu, Theoretical and experimental investigations on the performance of a four stroke adiabatic DI diesel engine, Int. J. Adv. Eng. Technol. 6(3), 1089–1096 (2013). ISSN: 22311963

  15. A. Demirba, Production of biodiesel from algae oils. Part A: recovery, utilization, and environmental effects. Energy Sour. 31(2), 163–168 (2009)

    Article  Google Scholar 

  16. M. Balat, Potential alternatives to edible oils for biodiesel production—a review of current work. Energy Convers. Manag. 52(2), 1479–1492 (2011)

    Article  Google Scholar 

  17. A. Demirbas, Importance of biodiesel as transportation fuel. Energy Policy 35(9), 4661–4670 (2007)

    Article  Google Scholar 

  18. H. Fukuda, A. Kondo, H. Noda, Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92(5), 405–416 (2001)

    Article  Google Scholar 

  19. M. Gui, K. Lee, S. Bhatia, Feasibility of edible oil vs. non-edible oil against waste edible oil as biodiesel feedstock. Energy 33(11), 1646–1653 (2008)

    Article  Google Scholar 

  20. A. Demirbas, Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: a solution to pollution problems. Appl. Energy 88, 3541–3547 (2011)

    Article  Google Scholar 

  21. H.J. Berchmans, S. Hirata, Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 99(6), 1716–1721 (2011)

    Article  Google Scholar 

  22. S. Jain, M. Sharma, Kinetics of acid base catalyzed transesterification of Jatropha curcas oil. Bioresour. Technol. 101(20), 7701–7706 (2010)

    Article  Google Scholar 

  23. H. Lu, Y. Liu, H. Zhou, Y. Yang, M. Chen, B. Liang, Production of biodiesel from Jatropha curcas L. oil. Comput. Chem. Eng. 33(5), 1091–1096 (2009)

    Article  Google Scholar 

  24. S.A. Raja, D.S.R. Smart, C.L.R. Lee, Biodiesel production from jatropha oil and its characterization. Res. J. Chem. Sci. 1(1), 81–87 (2011)

    Google Scholar 

  25. H. Muthu, V. SathyaSelvabala, T. Varathachary, D.K. Selvaraj, J. Nandagopal, S. Subramanian, Synthesis of biodiesel from Neem oil using sulfated zirconia via transesterification. Braz. J. Chem. Eng. 27(4), 601–608 (2010)

    Article  Google Scholar 

  26. S.S. Ragit, S.K. Mohapatra, K. Kundu, P. Gill, Optimization of neem methyl ester from transesterification process and fuel characterization as a diesel substitute. Biomass Bioenergy 35(3), 1138–1144 (2011)

    Article  Google Scholar 

  27. T.V. Rao, G.P. Rao, K.H.C. Reddy, Experimental investigation of pongamia, jatropha and neem methyl esters as biodiesel on CI engine, Jordon J. Mech. Ind. Eng. 2 (2), 117–122 (2008). ISSN: 1995-6665

  28. A.S. Ramadhas, S. Jayaraj, C. Muraleedharan, Use of vegetable oils as I.C engine fuels: a review. Renew. Energy 29, 727–742 (2004). doi:10.1016/j.renene.2003.09.008

    Article  Google Scholar 

  29. B.K. Barnwal, M.P. Sharma, Prospects of biodiesel production from vegetable oils India. Renew. Sustain. Energy Rev. 9, 363–378 (2005). doi:10.1016/j.rser.2004.05.007

    Article  Google Scholar 

  30. D. Agarwal, L. Kumar, A.K. Agarwal, Performance evaluation of a vegetable oil fuelled CI engine. Renew. Energy 33(6), 1147–1156 (2008). doi:10.1016/j.renene.2007.06.017

    Article  Google Scholar 

  31. R. Sarin, M. Sharma, Jatropha palm biodiesel blends: an optimum mix for Asia. Fuel 86, 1365–1371 (2007). doi:10.1016/j.fuel.2006.11.040

    Article  Google Scholar 

  32. P.D. Patil, D. Shuguang, Optimization of biodiesel production from edible and non-edible vegetable oil. Fuel 88, 1302–1306 (2009)

    Article  Google Scholar 

  33. S. Pehan, M.S. Jerman, M. Kegl, B. Kegl, Biodiesel influence on tribology characteristics of a diesel engine. Fuel 88, 970–979 (2009)

    Article  Google Scholar 

  34. A.A. Apostolakou, I.K. Kookos, C. Marazioti, K.C. Angelopoulos, Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Process. Technol. 90, 1023–1031 (2009)

    Article  Google Scholar 

  35. M. Lapuerta, O. Armas, J. Rodriguez, J. Fernandez, Effect of biodiesel fuels on diesel engine emission. Prog. Energy Combust. Sci. 34, 198–223 (2008)

    Article  Google Scholar 

  36. C. Mazzoleni, H.D. Kuhns, H. Moosmuller, J. Witt, N.J. Nussbaum, M.C.O. Chang, G. Parthsarathy, S.K.K. Nathagoundenpalayan, G. Nikolich, J.G. Watson, A case study of real world tail pipe emission for school buses using a 20% biodiesel blend. Sci. Total Environ. 385, 146–159 (2007)

    Article  Google Scholar 

  37. C. Choi, G. Bower, R. Reitz, Effects of biodiesel blended fuels and multiple injections on DI diesel engines, SAE Technical Paper 970218 (1997). doi:10.4271/970218

  38. P. Kevadia, A. J. Modi, Experimental study on emission performance of diesel engine fuelled with blends of diesel and jatropha biodiesel, in Thermal Fluid and Manufacturing Science (Narosa Publication House, New Delhi, 2012), 255–261, ISBN: 978-81-8487-202-6

  39. A. Karmakar, S. Karmakar, S. Mukherjee, Biodiesel production from neem towards feedstock diversification: Indian perspective. Renew. Sustain. Energy Rev. 16(1), 1050–1060 (2012)

    Article  Google Scholar 

  40. C. Martín, A. Moure, G. Martín, E. Carrillo, H. Domínguez, J.C. Parajó, Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioenergy 34(4), 533–538 (2010)

    Article  Google Scholar 

  41. S.K. Narwal, N.K. Saun, P. Dogra, G. Chauhan, R. Gupta, Production and characterization of biodiesel using nonedible castor oil by immobilized lipase from bacillus aerius. Biomed. Res. Int. (2015). doi:10.1155/2015/281934

    Google Scholar 

  42. R. Wang, M.A. Hanna, W.W. Zhou, P.S. Bhadury, Q. Chen, B.A. Song, S. Yang, Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapium sebiferum L and Jatropha Curcas L. Bioresour. Technol. 102(2), 1194–1199 (2011)

    Article  Google Scholar 

  43. K. Biswas, I. Chattopadhyay, R.K. Banerjee, U. Bandyopadhyay, Biological activities and medicinal properties of Neem (Azadirachta indica). Curr. Sci. 82(11), 1336–1345 (2002)

    Google Scholar 

  44. R.N. Chopra, S.L. Nayer, I.C. Chopra, Glossary of Indian Medicinal Plants (CSIR, New Delhi, 1956)

    Google Scholar 

  45. R.P. Singh, M.S. Chari, A.K. Raheja, W. Kraus, Neem and Environment. Oxford & IBH Publishing, New Delhi 1–2, 1–1198 (1996)

    Google Scholar 

  46. W. Kraus, The neem tree: source of unique natural products for integrated pest management, Medicine, Industry and Purposes, ed. by H. Schmutterer (Wiley-VCH, Weinheim, 1995), 35–88. ISBN 3-527-300546

    Google Scholar 

  47. G.S. Vanna, Miracles of Neem Tree (Rasayan Pharmacy, New Delhi, 1976)

    Google Scholar 

  48. A.Y. Ketkar, C.M. Ketkar, The neem tree: source of unique natural products for integrated pest management, Medicine, Industry and Other Purposes, ed. by H. Schmutterer (Wiley-VCH, Weinheim, 1995), 518–525. ISBN 3-527-300546

    Google Scholar 

  49. M. Khan, S.W. Wassilew, Natural Pesticides from the Neem Tree and Other Tropical Plants, ed. by H. Schmutterer, K.R.S. Asher, (GTZ, Eschborn, Germany 1987), 645–650

  50. M. Jacobson, The neem tree: source of unique natural products for integrated pest management, Medicine, Industry and Other Purposes, ed. by H. Schmutterer (Wiley-VCH, Weinheim, 1995), 484–495. ISBN 3-527-300546

  51. M.V.S. Murali Krishna, R.P. Chowdary, T.K.K. Reddy, P.V.K. Murthy, Performance evaluation of waste fried vegetable oil in la low grade low heat rejection diesel engine. Int. J. Res. Mech. Eng. Technol. 2(2), 35–43 (2012)

    Google Scholar 

  52. C.K. Reddy, M.V.S. Murali Krishna, P.V.K. Murthy, T. Ratna Reddy, Performance evaluation of a low grade low heat rejection diesel engine with crude Pongamia oil. Int. Sch. Res. Net. (ISRN) Renew. Energy, Article ID 489605, 1–10 (2012)

  53. N. Janardhan, M.V.S. Murali Krishna, P. Ushasri, P.V.K. Murthy, Performance, emissions and combustion characteristics with ceramic coated diesel engine with jatropha oil based biodiesel. Int. J. Energy Technol. 5(21), 1–3 (2013)

    Google Scholar 

  54. Y. Yoshimoto, M. Onedera, H. Tamaki, Reduction of Nox and smoke and BSFC in a diesel engine fueled by biodiesel emulsion with used frying oil (No. 1999-01-3598), SAE Transaction (1999)

  55. K. Sureshkumar, R. Velraj, R. Ganesan, Performance and exhaust emission characteristics of a CI engine speed fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Renew. Energy 33, 2294–2302 (2008)

    Article  Google Scholar 

  56. A.J. Modi, D.C. Gosai, Bio-diesel: the alternate of petroleum diesel, International Symposium on Renewable Energy for Rural Development (ISORE-2010), S.N. Arts, D.J. Malpani Commerce & B.N. Sarda Science College, Sangamner, Dist. Ahmednagar, Maharastra State (MS), February 25–27 (2010)

  57. G.L. Borman, K.W. Gagland, Combustion Engineering (WCB/McGraw-Hill, Boston, 1998). ISBN 9780070065673

    Google Scholar 

  58. P. Zelenka, H. Aufinger, W. Reczek, W. Catellieri, Cooled EGR—a key technology for future efficient HD diesels, SAE Paper 980190 (1998)

  59. A.M. Kreso, J.H. Johnson, L.D. Gratz, S.T. Bagley, D.G. Leddy, A study of the effects of exhaust gas recirculation on heavy-duty diesel engine emissions, SAE Paper 981422 (1988)

  60. J.B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill Inc., New York, 1988). ISBN 9780070286375

    Google Scholar 

  61. A. Borissov, J.J. McCoy, Supersonic injection of gaseous fuel described as possible solution for emission from large bore gas engines. ASME ICE 38, 488 (2002)

    Google Scholar 

  62. K. Akihama, Y. Takatori, K. Inagaki, S. Sasaki, A.M. Dean, Mechanism of the smokeless rich diesel combustion by reducing temperature, SAE Paper 2001-01-0655 (2001)

  63. S. Kimura, O. Aoki, Y. Kitahara, E. Aiyoshizawa, Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standard, SAE Paper 2001-01-0200 (2001)

  64. A. Ishida, A. Nishimura, M. Uranishi, R. Kihara, A. Nakamura, P. Newman, Development of ECOS-DDF natural gas engine for medium duty trucks—exhaust gas emission reduction against base Diesel engine, JSAE Paper 20005001 (2000)

  65. A. Hultqvist, U. Engdar, B. Johansson, J. Klingmann, Reacting boundary layers in a homogeneous charge compression ignition (HCCI) engine, SAE Paper 2001-01-1032 (2001)

  66. H. Machacon, S. Shiga, T. Karasawa, H. Nakamura, Simultaneous reduction of soot and NOx by intake gas variation, 6th International Symposium on Marine Engineering (2000)

  67. T. Murayama, M. Zheng, T. Chikahisa, Y. Oh, Y. Fujiwara, S. Tosaka, Simultaneous reductions of smoke and NOx from a DI diesel engine with EGR and dimethyl carbonate, SAE Transactions 952518 (1995)

  68. D. Tomazic, A. Pfeifer, Cooled EGR—a must or an option for 2002/04, SAE Paper 2002-01-0962 (2002)

  69. A.J. Alimin, K.A. Kamarudin, The effect of EGR rates on NOx and smoke emissions of an IDI diesel engine fuelled with Neem biodiesel blends. Int. J. Energy Environ. 2(3), 477–490 (2011)

    Google Scholar 

  70. G.H. Abd-Alla, H.A. Soliman, O.A. Badr, M.F. Rabbo, Effects of diluents and intake air temperature in exhaust gas recirculation of an indirect injection dual fuel engine. Energy Convers. Manag. 42, 1033–1045 (2001)

    Article  Google Scholar 

  71. D. Agarwal, S. Sinha, K. Agarwal, Experimental investigation of control of NOx emissions in biodiesel fueled compression engine. Renew. Energy 31, 2356–2369 (2006)

    Article  Google Scholar 

  72. N. Ladommatos, R. Balian, R. Horrocks, L. Cooper, The effect of exhaust gas recirculation on soot formation in a high-speed direct-injection diesel engine, SAE 960841 (1996)

  73. G.H. Abd-Alla, Using exhaust gas recirculation in internal combustion engines: a review. Energy Convers. Manag. 43, 1027–1042 (2012)

    Article  Google Scholar 

  74. J.M. Desantes, J. Galindo, C. Guardiola, V. Dolz, Air mass flow estimation in turbocharged diesel engine from in-cylinder pressure measurement. Exp. Therm. Fluid Sci. 34, 37–47 (2010)

    Article  Google Scholar 

  75. G. Stumpp, W. Banzhaf, An exhaust gas recirculation system for diesel engines, SAE Technical Paper 780222 (1978)

  76. M. Zheng, G.T. Reader, J.G. Hawley, Diesel engine exhaust gas recirculation—a review on advanced and novel concept. Energy Convers. Manag. 45, 883–900 (2004)

    Article  Google Scholar 

  77. R.M. Wagner, Jr. J.B. Green, T.Q. Dam, K.D. Edwards, J.M. Storey, Simultaneous low engine-out NOx and particulate matter with highly diluted diesel combustion, SAE 2003-01-0262 (2003)

  78. S. Sasaki, D. Sawada, T. Ueda, H. Sami, Effect of EGR on direct injection gasoline engine. JSAE Rev. 19, 223–228 (1998)

    Article  Google Scholar 

  79. J. Kusaka, T. Okamoto, Y. Daisho, R. Kihara, T. Saito, Combustion and exhaust gas emission characteristics of a diesel engine dual-fueled with natural gas. JSAE Rev. 21, 489–496 (1996)

    Article  Google Scholar 

  80. Y.-L. Bai, Z. Wang, J.-X. Wang, Part load characteristics of direct injection spark ignition engine using exhaust gas trap. Appl. Energy 87, 2640–2646 (2010)

    Article  Google Scholar 

  81. G. Fontana, E. Galloni, Experimental analysis of a spark ignition engine using exhaust gas recycle at WOT operation. Appl. Energy 87, 2187–2193 (2010)

    Article  Google Scholar 

  82. L.M. Das, R. Mathur, Exhaust gas recirculation for NOx control in a multi cylinder hydrogen supplemented SI engine. Int. J. Hydrog. Energy 18(12), 1013–1018 (1993)

    Article  Google Scholar 

  83. Y. Sato, A. Noda, T. Sakamoto, Combustion control of direct injection methanol engine using a combination of charge heating and exhaust gas recirculation. JSAE Rev. 16, 369–373 (1995)

    Article  Google Scholar 

  84. M.Y.E. Selim, Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine. Energy Convers. Manag. 44, 707–721 (2003)

    Article  Google Scholar 

  85. R.W. Wade, Light duty NOx-HC particulate trade-off, SAE Technical Paper 800335 (1980)

  86. J.R. Needham, D.M. Doyle, A.J. Nicol, The low NOx truck engine, SAE Technical Paper 910731 (1991)

  87. A.K. Agarwal, S.K. Singh, S. Sinha, M.K. Shukla, Effect of EGR on the exhaust gas temperature and exhaust opacity in compression ignition engines. Sadhana 29, 275–284 (2004)

    Article  Google Scholar 

  88. S. Mehta, F. Oey, C.L. Sumbung, Y.A. Levendis, An aerodynamically regenerated diesel particulate trap with a flow-through soot incinerator section, JSAE 940461 (1994)

  89. C. Cinar, T. Topgul, M. Ciniviz, C. Hasimoglu, Effects of injection pressure and intake CO2 concentration on performance and emission parameters of an IDI turbocharged diesel engine. Appl. Therm. Eng. 25, 1854–1862 (2005)

    Article  Google Scholar 

  90. J.E. Dec, Advanced compression ignition engines-understanding the in-cylinder processes. Proc. Combust. Inst. 32, 2727–2742 (2009)

    Article  Google Scholar 

  91. K. Ishiki, S. Oshida, M. Takiguchi, A study of abnormal wear in power cylinder of diesel engine with EGR-wear mechanism of soot contaminated in lubricating oil, SAE Technical Paper 2000-01-0925 (2000)

  92. M. Gautam, K. Chitoor, M. Durbha, J.C. Summers, Effects of diesel soot contaminated oil on engine wear-investigation of Noval oil formulations. Tribol. Int. 32, 687–699 (1999)

    Article  Google Scholar 

  93. I. Nagai, H. Endo, H. Nakamura, H. Yano, Soot and valve train wear I passenger car diesel engines, SAE Technical Paper 831757 (1983)

  94. A. Aldajah, O.O. Ajayi, G.R. Fenske, I.L. Goldblatt, Effect of exhaust gas recirculation (EGR) contamination of diesel engine oil on wear. Wear 263, 93–98 (2007)

    Article  Google Scholar 

  95. S. George, S. Balla, M. Gautam, Effect of diesel soot contaminated oil on engine wear. Wear 262, 1113–1122 (2007)

    Article  Google Scholar 

  96. S.K. Singh, A.K. Agarwal, M. Sharma, Experimental investigations of heavy metal addition in lubricating oil and soot deposition in an EGR operated engine. Appl. Therm. Eng. 26, 259–266 (2006)

    Article  Google Scholar 

  97. N. Ladommatos, R. Balian, R. Horrocks, L. Cooper, The effect of exhaust gas recirculation on combustion and NOx emissions in a high-speed directinjection diesel engine, SAE Technical Paper 960840 (1996)

  98. S.L. Plee, T. Ahmad, J.P. Myers, G.M. Faeth, Diesel NOx emissions—a simple correlation technique for intake air effects, Symposium (International) on Combustion, 19(1), The Combustion Institute, Elsevier Inc., 1495–1502 (1982)

  99. A.S. Ramadhas, S. Jayaraj, C. Muraleedharan, Performance and emission studies on biodiesel-liquefied petroleum gas dual fuel engine with exhaust gas recirculation. J. Renew. Sustain. Energy 2(1), 1–9 (2010)

    Article  Google Scholar 

  100. Six Common Air Pollutants, United States Environmental Protection Agency, January 17, 2015. http://www.epa.gov/region01/eco/diesel/health_effects.html

  101. K. Ishiki, S. Oshida, M. Takiguchi, U. Mrabe, A study of abnormal wear in power cylinder of diesel engine with EGR—wear mechanism of soot contaminated in lubricating oil, SAE Technical Paper 2000-01-0925 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashishkumar Jashvantlal Modi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, A.J., Gosai, D.C. & Solanki, C.M. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel. J. Inst. Eng. India Ser. C 99, 181–195 (2018). https://doi.org/10.1007/s40032-017-0384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-017-0384-8

Keywords

Navigation