Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

  • Ashishkumar Jashvantlal Modi
  • Dipak Chimangiri Gosai
  • Chandresh Maheshchandra Solanki
Original Contribution


Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5–40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.


Neem biodiesel LHR diesel engine Exhaust gas recirculation (EGR) Emission NOx 


  1. 1.
    R. Kamo, W. Bryzik, Cummins-TARADCOM adiabatic turbocompound engine program, SAE Technical Paper 810070 (1981). doi: 10.4271/810070
  2. 2.
    R. Kamo, W. Bryzik, Cummins/TACOM advanced adiabatic engine, SAE Technical Paper 840428 (1984) doi: 10.4271/840428
  3. 3.
    W. Bryzik, R. Kamo, TACOM/Cummins adiabatic engine program, SAE Technical Paper 830314 (1983). doi: 10.4271/830314
  4. 4.
    R. Kamo, W. Bryzik, Ceramics in heat engines, SAE Technical Paper 790645 (1979). doi: 10.4271/790645
  5. 5.
    A. Modi, D. Patel, Experimental study on LHR diesel engine performance with blends of diesel and neem biodiesel, SAE Technical Paper 2015–26-0052 (2015). doi: 10.4271/2015-26-0052
  6. 6.
    A. Modi, Experimental study of energy balance in low heat rejection diesel engine, SAE Technical Paper 2012–01-0389 (2012). doi: 10.4271/2012-01-0389
  7. 7.
    A.J. Modi, D.C. Gosai, Experimental analysis of performance of low heat rejection (LHR) diesel engine. Int. J. Adv. Therm. Sci. Eng. 1(1), 17–25 (2010)Google Scholar
  8. 8.
    A. Modi, D. Gosai, Experimental study on low heat rejection diesel engine performance with blends of diesel and palm biodiesel. SAE Int. J. Fuels Lubr. 3(2), 246–259 (2010). doi: 10.4271/2010-01-1519 CrossRefGoogle Scholar
  9. 9.
    A.J. Modi, D.C. Gosai, Experimental analysis of performance of bio-fuels (neem and palm bio-diesel) on low heat rejection (LHR) diesel engine, Proceedings of Third International Conference of Advances in Mechanical Engineering. (ICAME-2010), S. V. National Institute of Technology, Surat, Gujarat, Jan 4–6 (2010) Google Scholar
  10. 10.
    D.C. Gosai, H.J. Nagarsheth, Performance and exhaust emission studies of an adiabatic engine with optimum cooling. Procedia Technol 14, 413–421 (2014). doi: 10.1016/j.protcy.2014.08.053 CrossRefGoogle Scholar
  11. 11.
    S. Jaichandar, P. Tamilporai, Low heat rejection engines—an overview, SAE Technical Paper 2003–01-0405 (2003). doi: 10.4271/2003-01-0405
  12. 12.
    C. Haşimoğlu, M. Ciniviz, İ. Özsert, Y. İçingür, A. Parlak, M. Sahir Salman, Performance characteristics of a low heat rejection diesel engine operating with biodiesel. Renew. Energy 33(7), 1709–1715 (2008). doi: 10.1016/j.renene.2007.08.002 CrossRefGoogle Scholar
  13. 13.
    S. Madhusudhana, D. Kanakaraja, P. Surendra, A. Srinivas, Insulation effect on the performance of a low heat rejection DI diesel engine, Int. J. Eng. Technol. Manag. Appl. Sci. 3(2) (2015). ISSN: 2349-4476Google Scholar
  14. 14.
    S. Sunil Kumar Reddy, V. Pandurangadu, Theoretical and experimental investigations on the performance of a four stroke adiabatic DI diesel engine, Int. J. Adv. Eng. Technol. 6(3), 1089–1096 (2013). ISSN: 22311963Google Scholar
  15. 15.
    A. Demirba, Production of biodiesel from algae oils. Part A: recovery, utilization, and environmental effects. Energy Sour. 31(2), 163–168 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Balat, Potential alternatives to edible oils for biodiesel production—a review of current work. Energy Convers. Manag. 52(2), 1479–1492 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Demirbas, Importance of biodiesel as transportation fuel. Energy Policy 35(9), 4661–4670 (2007)CrossRefGoogle Scholar
  18. 18.
    H. Fukuda, A. Kondo, H. Noda, Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92(5), 405–416 (2001)CrossRefGoogle Scholar
  19. 19.
    M. Gui, K. Lee, S. Bhatia, Feasibility of edible oil vs. non-edible oil against waste edible oil as biodiesel feedstock. Energy 33(11), 1646–1653 (2008)CrossRefGoogle Scholar
  20. 20.
    A. Demirbas, Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: a solution to pollution problems. Appl. Energy 88, 3541–3547 (2011)CrossRefGoogle Scholar
  21. 21.
    H.J. Berchmans, S. Hirata, Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 99(6), 1716–1721 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Jain, M. Sharma, Kinetics of acid base catalyzed transesterification of Jatropha curcas oil. Bioresour. Technol. 101(20), 7701–7706 (2010)CrossRefGoogle Scholar
  23. 23.
    H. Lu, Y. Liu, H. Zhou, Y. Yang, M. Chen, B. Liang, Production of biodiesel from Jatropha curcas L. oil. Comput. Chem. Eng. 33(5), 1091–1096 (2009)CrossRefGoogle Scholar
  24. 24.
    S.A. Raja, D.S.R. Smart, C.L.R. Lee, Biodiesel production from jatropha oil and its characterization. Res. J. Chem. Sci. 1(1), 81–87 (2011)Google Scholar
  25. 25.
    H. Muthu, V. SathyaSelvabala, T. Varathachary, D.K. Selvaraj, J. Nandagopal, S. Subramanian, Synthesis of biodiesel from Neem oil using sulfated zirconia via transesterification. Braz. J. Chem. Eng. 27(4), 601–608 (2010)CrossRefGoogle Scholar
  26. 26.
    S.S. Ragit, S.K. Mohapatra, K. Kundu, P. Gill, Optimization of neem methyl ester from transesterification process and fuel characterization as a diesel substitute. Biomass Bioenergy 35(3), 1138–1144 (2011)CrossRefGoogle Scholar
  27. 27.
    T.V. Rao, G.P. Rao, K.H.C. Reddy, Experimental investigation of pongamia, jatropha and neem methyl esters as biodiesel on CI engine, Jordon J. Mech. Ind. Eng. 2 (2), 117–122 (2008). ISSN: 1995-6665Google Scholar
  28. 28.
    A.S. Ramadhas, S. Jayaraj, C. Muraleedharan, Use of vegetable oils as I.C engine fuels: a review. Renew. Energy 29, 727–742 (2004). doi: 10.1016/j.renene.2003.09.008 CrossRefGoogle Scholar
  29. 29.
    B.K. Barnwal, M.P. Sharma, Prospects of biodiesel production from vegetable oils India. Renew. Sustain. Energy Rev. 9, 363–378 (2005). doi: 10.1016/j.rser.2004.05.007 CrossRefGoogle Scholar
  30. 30.
    D. Agarwal, L. Kumar, A.K. Agarwal, Performance evaluation of a vegetable oil fuelled CI engine. Renew. Energy 33(6), 1147–1156 (2008). doi: 10.1016/j.renene.2007.06.017 CrossRefGoogle Scholar
  31. 31.
    R. Sarin, M. Sharma, Jatropha palm biodiesel blends: an optimum mix for Asia. Fuel 86, 1365–1371 (2007). doi: 10.1016/j.fuel.2006.11.040 CrossRefGoogle Scholar
  32. 32.
    P.D. Patil, D. Shuguang, Optimization of biodiesel production from edible and non-edible vegetable oil. Fuel 88, 1302–1306 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Pehan, M.S. Jerman, M. Kegl, B. Kegl, Biodiesel influence on tribology characteristics of a diesel engine. Fuel 88, 970–979 (2009)CrossRefGoogle Scholar
  34. 34.
    A.A. Apostolakou, I.K. Kookos, C. Marazioti, K.C. Angelopoulos, Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Process. Technol. 90, 1023–1031 (2009)CrossRefGoogle Scholar
  35. 35.
    M. Lapuerta, O. Armas, J. Rodriguez, J. Fernandez, Effect of biodiesel fuels on diesel engine emission. Prog. Energy Combust. Sci. 34, 198–223 (2008)CrossRefGoogle Scholar
  36. 36.
    C. Mazzoleni, H.D. Kuhns, H. Moosmuller, J. Witt, N.J. Nussbaum, M.C.O. Chang, G. Parthsarathy, S.K.K. Nathagoundenpalayan, G. Nikolich, J.G. Watson, A case study of real world tail pipe emission for school buses using a 20% biodiesel blend. Sci. Total Environ. 385, 146–159 (2007)CrossRefGoogle Scholar
  37. 37.
    C. Choi, G. Bower, R. Reitz, Effects of biodiesel blended fuels and multiple injections on DI diesel engines, SAE Technical Paper 970218 (1997). doi: 10.4271/970218
  38. 38.
    P. Kevadia, A. J. Modi, Experimental study on emission performance of diesel engine fuelled with blends of diesel and jatropha biodiesel, in Thermal Fluid and Manufacturing Science (Narosa Publication House, New Delhi, 2012), 255–261, ISBN: 978-81-8487-202-6Google Scholar
  39. 39.
    A. Karmakar, S. Karmakar, S. Mukherjee, Biodiesel production from neem towards feedstock diversification: Indian perspective. Renew. Sustain. Energy Rev. 16(1), 1050–1060 (2012)CrossRefGoogle Scholar
  40. 40.
    C. Martín, A. Moure, G. Martín, E. Carrillo, H. Domínguez, J.C. Parajó, Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioenergy 34(4), 533–538 (2010)CrossRefGoogle Scholar
  41. 41.
    S.K. Narwal, N.K. Saun, P. Dogra, G. Chauhan, R. Gupta, Production and characterization of biodiesel using nonedible castor oil by immobilized lipase from bacillus aerius. Biomed. Res. Int. (2015). doi: 10.1155/2015/281934 Google Scholar
  42. 42.
    R. Wang, M.A. Hanna, W.W. Zhou, P.S. Bhadury, Q. Chen, B.A. Song, S. Yang, Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapium sebiferum L and Jatropha Curcas L. Bioresour. Technol. 102(2), 1194–1199 (2011)CrossRefGoogle Scholar
  43. 43.
    K. Biswas, I. Chattopadhyay, R.K. Banerjee, U. Bandyopadhyay, Biological activities and medicinal properties of Neem (Azadirachta indica). Curr. Sci. 82(11), 1336–1345 (2002)Google Scholar
  44. 44.
    R.N. Chopra, S.L. Nayer, I.C. Chopra, Glossary of Indian Medicinal Plants (CSIR, New Delhi, 1956)Google Scholar
  45. 45.
    R.P. Singh, M.S. Chari, A.K. Raheja, W. Kraus, Neem and Environment. Oxford & IBH Publishing, New Delhi 1–2, 1–1198 (1996)Google Scholar
  46. 46.
    W. Kraus, The neem tree: source of unique natural products for integrated pest management, Medicine, Industry and Purposes, ed. by H. Schmutterer (Wiley-VCH, Weinheim, 1995), 35–88. ISBN 3-527-300546Google Scholar
  47. 47.
    G.S. Vanna, Miracles of Neem Tree (Rasayan Pharmacy, New Delhi, 1976)Google Scholar
  48. 48.
    A.Y. Ketkar, C.M. Ketkar, The neem tree: source of unique natural products for integrated pest management, Medicine, Industry and Other Purposes, ed. by H. Schmutterer (Wiley-VCH, Weinheim, 1995), 518–525. ISBN 3-527-300546Google Scholar
  49. 49.
    M. Khan, S.W. Wassilew, Natural Pesticides from the Neem Tree and Other Tropical Plants, ed. by H. Schmutterer, K.R.S. Asher, (GTZ, Eschborn, Germany 1987), 645–650Google Scholar
  50. 50.
    M. Jacobson, The neem tree: source of unique natural products for integrated pest management, Medicine, Industry and Other Purposes, ed. by H. Schmutterer (Wiley-VCH, Weinheim, 1995), 484–495. ISBN 3-527-300546Google Scholar
  51. 51.
    M.V.S. Murali Krishna, R.P. Chowdary, T.K.K. Reddy, P.V.K. Murthy, Performance evaluation of waste fried vegetable oil in la low grade low heat rejection diesel engine. Int. J. Res. Mech. Eng. Technol. 2(2), 35–43 (2012)Google Scholar
  52. 52.
    C.K. Reddy, M.V.S. Murali Krishna, P.V.K. Murthy, T. Ratna Reddy, Performance evaluation of a low grade low heat rejection diesel engine with crude Pongamia oil. Int. Sch. Res. Net. (ISRN) Renew. Energy, Article ID 489605, 1–10 (2012)Google Scholar
  53. 53.
    N. Janardhan, M.V.S. Murali Krishna, P. Ushasri, P.V.K. Murthy, Performance, emissions and combustion characteristics with ceramic coated diesel engine with jatropha oil based biodiesel. Int. J. Energy Technol. 5(21), 1–3 (2013)Google Scholar
  54. 54.
    Y. Yoshimoto, M. Onedera, H. Tamaki, Reduction of Nox and smoke and BSFC in a diesel engine fueled by biodiesel emulsion with used frying oil (No. 1999-01-3598), SAE Transaction (1999)Google Scholar
  55. 55.
    K. Sureshkumar, R. Velraj, R. Ganesan, Performance and exhaust emission characteristics of a CI engine speed fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Renew. Energy 33, 2294–2302 (2008)CrossRefGoogle Scholar
  56. 56.
    A.J. Modi, D.C. Gosai, Bio-diesel: the alternate of petroleum diesel, International Symposium on Renewable Energy for Rural Development (ISORE-2010), S.N. Arts, D.J. Malpani Commerce & B.N. Sarda Science College, Sangamner, Dist. Ahmednagar, Maharastra State (MS), February 25–27 (2010)Google Scholar
  57. 57.
    G.L. Borman, K.W. Gagland, Combustion Engineering (WCB/McGraw-Hill, Boston, 1998). ISBN 9780070065673Google Scholar
  58. 58.
    P. Zelenka, H. Aufinger, W. Reczek, W. Catellieri, Cooled EGR—a key technology for future efficient HD diesels, SAE Paper 980190 (1998)Google Scholar
  59. 59.
    A.M. Kreso, J.H. Johnson, L.D. Gratz, S.T. Bagley, D.G. Leddy, A study of the effects of exhaust gas recirculation on heavy-duty diesel engine emissions, SAE Paper 981422 (1988)Google Scholar
  60. 60.
    J.B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill Inc., New York, 1988). ISBN 9780070286375Google Scholar
  61. 61.
    A. Borissov, J.J. McCoy, Supersonic injection of gaseous fuel described as possible solution for emission from large bore gas engines. ASME ICE 38, 488 (2002)Google Scholar
  62. 62.
    K. Akihama, Y. Takatori, K. Inagaki, S. Sasaki, A.M. Dean, Mechanism of the smokeless rich diesel combustion by reducing temperature, SAE Paper 2001-01-0655 (2001)Google Scholar
  63. 63.
    S. Kimura, O. Aoki, Y. Kitahara, E. Aiyoshizawa, Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standard, SAE Paper 2001-01-0200 (2001)Google Scholar
  64. 64.
    A. Ishida, A. Nishimura, M. Uranishi, R. Kihara, A. Nakamura, P. Newman, Development of ECOS-DDF natural gas engine for medium duty trucks—exhaust gas emission reduction against base Diesel engine, JSAE Paper 20005001 (2000)Google Scholar
  65. 65.
    A. Hultqvist, U. Engdar, B. Johansson, J. Klingmann, Reacting boundary layers in a homogeneous charge compression ignition (HCCI) engine, SAE Paper 2001-01-1032 (2001)Google Scholar
  66. 66.
    H. Machacon, S. Shiga, T. Karasawa, H. Nakamura, Simultaneous reduction of soot and NOx by intake gas variation, 6th International Symposium on Marine Engineering (2000)Google Scholar
  67. 67.
    T. Murayama, M. Zheng, T. Chikahisa, Y. Oh, Y. Fujiwara, S. Tosaka, Simultaneous reductions of smoke and NOx from a DI diesel engine with EGR and dimethyl carbonate, SAE Transactions 952518 (1995)Google Scholar
  68. 68.
    D. Tomazic, A. Pfeifer, Cooled EGR—a must or an option for 2002/04, SAE Paper 2002-01-0962 (2002)Google Scholar
  69. 69.
    A.J. Alimin, K.A. Kamarudin, The effect of EGR rates on NOx and smoke emissions of an IDI diesel engine fuelled with Neem biodiesel blends. Int. J. Energy Environ. 2(3), 477–490 (2011)Google Scholar
  70. 70.
    G.H. Abd-Alla, H.A. Soliman, O.A. Badr, M.F. Rabbo, Effects of diluents and intake air temperature in exhaust gas recirculation of an indirect injection dual fuel engine. Energy Convers. Manag. 42, 1033–1045 (2001)CrossRefGoogle Scholar
  71. 71.
    D. Agarwal, S. Sinha, K. Agarwal, Experimental investigation of control of NOx emissions in biodiesel fueled compression engine. Renew. Energy 31, 2356–2369 (2006)CrossRefGoogle Scholar
  72. 72.
    N. Ladommatos, R. Balian, R. Horrocks, L. Cooper, The effect of exhaust gas recirculation on soot formation in a high-speed direct-injection diesel engine, SAE 960841 (1996)Google Scholar
  73. 73.
    G.H. Abd-Alla, Using exhaust gas recirculation in internal combustion engines: a review. Energy Convers. Manag. 43, 1027–1042 (2012)CrossRefGoogle Scholar
  74. 74.
    J.M. Desantes, J. Galindo, C. Guardiola, V. Dolz, Air mass flow estimation in turbocharged diesel engine from in-cylinder pressure measurement. Exp. Therm. Fluid Sci. 34, 37–47 (2010)CrossRefGoogle Scholar
  75. 75.
    G. Stumpp, W. Banzhaf, An exhaust gas recirculation system for diesel engines, SAE Technical Paper 780222 (1978)Google Scholar
  76. 76.
    M. Zheng, G.T. Reader, J.G. Hawley, Diesel engine exhaust gas recirculation—a review on advanced and novel concept. Energy Convers. Manag. 45, 883–900 (2004)CrossRefGoogle Scholar
  77. 77.
    R.M. Wagner, Jr. J.B. Green, T.Q. Dam, K.D. Edwards, J.M. Storey, Simultaneous low engine-out NOx and particulate matter with highly diluted diesel combustion, SAE 2003-01-0262 (2003)Google Scholar
  78. 78.
    S. Sasaki, D. Sawada, T. Ueda, H. Sami, Effect of EGR on direct injection gasoline engine. JSAE Rev. 19, 223–228 (1998)CrossRefGoogle Scholar
  79. 79.
    J. Kusaka, T. Okamoto, Y. Daisho, R. Kihara, T. Saito, Combustion and exhaust gas emission characteristics of a diesel engine dual-fueled with natural gas. JSAE Rev. 21, 489–496 (1996)CrossRefGoogle Scholar
  80. 80.
    Y.-L. Bai, Z. Wang, J.-X. Wang, Part load characteristics of direct injection spark ignition engine using exhaust gas trap. Appl. Energy 87, 2640–2646 (2010)CrossRefGoogle Scholar
  81. 81.
    G. Fontana, E. Galloni, Experimental analysis of a spark ignition engine using exhaust gas recycle at WOT operation. Appl. Energy 87, 2187–2193 (2010)CrossRefGoogle Scholar
  82. 82.
    L.M. Das, R. Mathur, Exhaust gas recirculation for NOx control in a multi cylinder hydrogen supplemented SI engine. Int. J. Hydrog. Energy 18(12), 1013–1018 (1993)CrossRefGoogle Scholar
  83. 83.
    Y. Sato, A. Noda, T. Sakamoto, Combustion control of direct injection methanol engine using a combination of charge heating and exhaust gas recirculation. JSAE Rev. 16, 369–373 (1995)CrossRefGoogle Scholar
  84. 84.
    M.Y.E. Selim, Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine. Energy Convers. Manag. 44, 707–721 (2003)CrossRefGoogle Scholar
  85. 85.
    R.W. Wade, Light duty NOx-HC particulate trade-off, SAE Technical Paper 800335 (1980)Google Scholar
  86. 86.
    J.R. Needham, D.M. Doyle, A.J. Nicol, The low NOx truck engine, SAE Technical Paper 910731 (1991)Google Scholar
  87. 87.
    A.K. Agarwal, S.K. Singh, S. Sinha, M.K. Shukla, Effect of EGR on the exhaust gas temperature and exhaust opacity in compression ignition engines. Sadhana 29, 275–284 (2004)CrossRefGoogle Scholar
  88. 88.
    S. Mehta, F. Oey, C.L. Sumbung, Y.A. Levendis, An aerodynamically regenerated diesel particulate trap with a flow-through soot incinerator section, JSAE 940461 (1994)Google Scholar
  89. 89.
    C. Cinar, T. Topgul, M. Ciniviz, C. Hasimoglu, Effects of injection pressure and intake CO2 concentration on performance and emission parameters of an IDI turbocharged diesel engine. Appl. Therm. Eng. 25, 1854–1862 (2005)CrossRefGoogle Scholar
  90. 90.
    J.E. Dec, Advanced compression ignition engines-understanding the in-cylinder processes. Proc. Combust. Inst. 32, 2727–2742 (2009)CrossRefGoogle Scholar
  91. 91.
    K. Ishiki, S. Oshida, M. Takiguchi, A study of abnormal wear in power cylinder of diesel engine with EGR-wear mechanism of soot contaminated in lubricating oil, SAE Technical Paper 2000-01-0925 (2000)Google Scholar
  92. 92.
    M. Gautam, K. Chitoor, M. Durbha, J.C. Summers, Effects of diesel soot contaminated oil on engine wear-investigation of Noval oil formulations. Tribol. Int. 32, 687–699 (1999)CrossRefGoogle Scholar
  93. 93.
    I. Nagai, H. Endo, H. Nakamura, H. Yano, Soot and valve train wear I passenger car diesel engines, SAE Technical Paper 831757 (1983)Google Scholar
  94. 94.
    A. Aldajah, O.O. Ajayi, G.R. Fenske, I.L. Goldblatt, Effect of exhaust gas recirculation (EGR) contamination of diesel engine oil on wear. Wear 263, 93–98 (2007)CrossRefGoogle Scholar
  95. 95.
    S. George, S. Balla, M. Gautam, Effect of diesel soot contaminated oil on engine wear. Wear 262, 1113–1122 (2007)CrossRefGoogle Scholar
  96. 96.
    S.K. Singh, A.K. Agarwal, M. Sharma, Experimental investigations of heavy metal addition in lubricating oil and soot deposition in an EGR operated engine. Appl. Therm. Eng. 26, 259–266 (2006)CrossRefGoogle Scholar
  97. 97.
    N. Ladommatos, R. Balian, R. Horrocks, L. Cooper, The effect of exhaust gas recirculation on combustion and NOx emissions in a high-speed directinjection diesel engine, SAE Technical Paper 960840 (1996)Google Scholar
  98. 98.
    S.L. Plee, T. Ahmad, J.P. Myers, G.M. Faeth, Diesel NOx emissions—a simple correlation technique for intake air effects, Symposium (International) on Combustion, 19(1), The Combustion Institute, Elsevier Inc., 1495–1502 (1982)Google Scholar
  99. 99.
    A.S. Ramadhas, S. Jayaraj, C. Muraleedharan, Performance and emission studies on biodiesel-liquefied petroleum gas dual fuel engine with exhaust gas recirculation. J. Renew. Sustain. Energy 2(1), 1–9 (2010)CrossRefGoogle Scholar
  100. 100.
    Six Common Air Pollutants, United States Environmental Protection Agency, January 17, 2015.
  101. 101.
    K. Ishiki, S. Oshida, M. Takiguchi, U. Mrabe, A study of abnormal wear in power cylinder of diesel engine with EGR—wear mechanism of soot contaminated in lubricating oil, SAE Technical Paper 2000-01-0925 (2000)Google Scholar

Copyright information

© The Institution of Engineers (India) 2017

Authors and Affiliations

  • Ashishkumar Jashvantlal Modi
    • 1
  • Dipak Chimangiri Gosai
    • 2
  • Chandresh Maheshchandra Solanki
    • 2
  1. 1.Department of Mechanical EngineeringGovernment Engineering CollegeBharuchIndia
  2. 2.Department of Mechanical EngineeringShri S’ad Vidya Mandal Institute of TechnologyBharuchIndia

Personalised recommendations