Skip to main content
Log in

Conjugate Heat Transfer Study in Hypersonic Flows

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C:

Specific heat at constant, kJ/kg K

E:

Total specific energy, kJ/kg

e:

Specific internal energy, kJ/kg

H:

Total specific enthalpy, kJ/kg

h:

Specific enthalpy, kJ/kg

k:

Thermal conductivity, W/m K

L:

Length, m

M:

Mach number

p:

Pressure, N/m2

\({\dot{\text{q}}}\) :

Heat flux, W/m2

Pr:

Prandtl number

R:

Universal gas constant

Re:

Reynolds number

S:

Source term

s:

Sutherland’s constant

St :

Stanton Number

T:

Temperature, °C

u:

X-direction velocity, m/s

v:

Y-direction velocity, m/s

x, y:

Cartesian co-ordinate system

λ:

Courant number

γ:

Specific heat ratio

μ:

Dynamic viscosity, kg/ms

τ:

Shear stress, N/m2

ρ:

Density, kg/m3

δ:

A parameter in AUSM-δ scheme

∞:

Freestream quantities

References

  1. J.D. Anderson Jr, Hypersonic and High-Temperature Gas Dynamics, AIAA Education Series, 2nd edn. (Virginia, 2006)

  2. S.D. Abram, Conjugate Problems in Convective Heat Transfer (CRC Press, Taylor and Francis Group, Boca Raton, 2010),  pp. 249–264

    Google Scholar 

  3. V. Chandrashekhar, Y.M. Jayathi, M. Sanjay, A mesh-less finite difference method for conjugate heat conduction problems. Trans. ASME J. Heat Transf. 132(8), 0813031–08130313 (2010)

    Google Scholar 

  4. M.S. Liou, A sequel to AUSM: AUSM+”. J. Comput. Phys. 129, 364–382 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. K.P. Rajesh, K.D. Manab, Effect of geometry on the conjugate heat transfer of wall jet flow over a backward-facing step. Trans. ASME J. Heat Transf. 131(11), 114501–114506 (2009)

    Article  Google Scholar 

  6. G.V. Kuznetsov, V.Y. Polovnikov, The conjugate problem of convective-conductive heat transfer for heat pipe lines. J. Eng. Thermophys. 20(2), 217–224 (2011)

    Article  Google Scholar 

  7. M. He, P. Bishop, A.J. Kassab, A. Minardi, A coupled FDM/BEM solution for the conjugate heat transfer problem. Numer. Heat Transf. Part B Fundam. 28(2), 139–154 (1995)

    Article  Google Scholar 

  8. D.A. Kontinos, Coupled thermal analysis method with application to metallic thermal protection panels. J. Thermo Phys. Heat Transf. 11(2), 173–181 (1997)

    Article  Google Scholar 

  9. C.P. Rahim, A.J. Kassab, R.A. Cavalleri, Coupled dual reciprocity boundary element/Finite volume method for transient conjugate heat transfer. J. Thermo Phys. Heat Transf. 14(1), 27–38 (2000)

    Article  Google Scholar 

  10. B. Hassan, D. Kuntz, D.L. Potter, Coupled fluid/thermal prediction of ablating hypersonic vehicle, in 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Paper No. 98-0168, 12–15 January, 1998

  11. F. Pietro, D. Domenic, A numerical method for conjugate heat transfer problems in hypersonic flows, in 40th AIAA Thermophysics Conference, Seattle, Washington, Paper No. 2008-4247, 23–26 June, 2008

  12. D.L. Schultz, T.V. Jones, Heat Transfer Measurements in Short-Duration Hypersonic Facilities. AGARDograph-AG-165, 1973

  13. W.J. Cook, E.J. Felderman, Reduction of data from thin film heat transfer gauge: a concise numerical technique. AIAA J. 4, 561–562 (1966)

    Article  Google Scholar 

  14. J. Blazek, Computational Fluid Dynamics: Principles and Applications (Elsevier, Oxford, UK, 2001)

  15. R. Peyret, T.D. Taylor, Computational Methods for Fluid Flow (Springer, New York, 1983)

    Book  MATH  Google Scholar 

  16. H.K. Veersteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics (Finite Volume Method) (Longman Scientific and Technical and Wiley, New York, 1995)

    Google Scholar 

  17. K. Vinayak, M. Viren, K.P.J. Reddy, Effectiveness of forward facing spike for drag reduction on a large angle blunt cone in hypersonic flow. J. Spacecr. Rocket. 43(3), 542–544 (2010)

    Google Scholar 

  18. J. Taler, Theory of transient experimental techniques for surface heat transfer. Int. J. Heat Mass Transf. 39(17), 3733–3748 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, N., Kulkarni, V. & Peetala, R.K. Conjugate Heat Transfer Study in Hypersonic Flows. J. Inst. Eng. India Ser. C 99, 151–158 (2018). https://doi.org/10.1007/s40032-017-0353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-017-0353-2

Keywords

Navigation