Skip to main content
Log in

Study of the Productivity and Surface Quality of Hybrid EDM

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

The development of new, advanced engineering materials and the need for precise prototypes and low-volume production have made the electric discharge machining (EDM), an important manufacturing process to meet such demands. It is capable of machining geometrically complex and hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, carbides etc. Conversely the low MRR limits its productivity. Abrasive water jet machine (AJM) tools are quick to setup and offer quick turn-around on the machine and could make parts out of virtually any material. They do not heat the material hence no heat affected zone and can make any intricate shape easily. The main advantages are flexibility, low heat production and ability to machine hard and brittle materials. Main disadvantages comprise the process produces a tapered cut and health hazards due to dry abrasives. To overcome the limitations and exploit the best of each of above processes; an attempt has been made to hybridize the processes of AJM and EDM. The appropriate abrasives routed with compressed air through the hollow electrode to construct the hybrid process i.e., abrasive jet electric discharge machining (AJEDM), the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process. The main process parameters were varied to explore their effects and experimental results show that AJEDM enhances the machining efficiency with better surface finish hence can fit the requirements of modern manufacturing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.F. Dauw, R. Snoeys, W. Dekeyser, Advanced pulse discriminating system for EDM process analysis and controls. Ann. CIRP 32(2), 541–549 (1983)

    Article  Google Scholar 

  2. M.L. Jeswani, Effects of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining. Wear 70, 133–139 (1981)

    Article  Google Scholar 

  3. H. Hocheng, W.T. Lei, H.S. Hsu, Preliminary study of material removal in electrical discharge machining of SiC/Al. J. Mater. Process. Technol. 63, 813–818 (1997)

    Article  Google Scholar 

  4. T. Masuzawa, State of the art of micromachining. Ann. CIRP 49(2), 473–488 (2000)

    Article  Google Scholar 

  5. F. Hana, S. Wachi, M. Kunieda, Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precis. Eng. 28, 378–385 (2004)

    Article  Google Scholar 

  6. J.H. Zhang, H. Zhang, D.S. Su, Y. Qin, M.Y. Huo, Q.H. Zhang, L. Wang, Adaptive fuzzy control system of a servomechanism for electro-discharge machining with ultrasonic vibration. J. Mater. Process. Technol. 129, 45–49 (2002)

    Article  Google Scholar 

  7. J.Y. Kao, Y.S. Tarng, A neural-network approach for the on-line monitoring of the electrical discharge machining process. J. Mater. Process. Technol. 69, 112–119 (1997)

    Article  Google Scholar 

  8. K.P. Rajurkar, W.M. Wang, A new model reference adaptive control of EDM. Ann. CIRP 38(1), 183–186 (1989)

    Article  Google Scholar 

  9. K.P. Rajurkar, W.M. Wang, Improvement of EDM performance with advanced monitoring and control system. J. Manuf. Sci. Eng. 119, 770–775 (1997)

    Article  Google Scholar 

  10. K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 43, 1287–1300 (2003)

    Article  Google Scholar 

  11. M. Junkar, J. Valentincic, Towards intelligent control of electrical discharge machining. J. Manuf. Syst. 29(5), 453–457 (1999)

    Google Scholar 

  12. M. Weck, J.M. Dehmer, Analysis and adaptive control of EDM sinking process using the ignition delay time and fall time as parameter. Ann. CIRP 41(1), 243–246 (1992)

    Article  Google Scholar 

  13. T. Kaneko, T. Onodera, Improvement in machining performance of die-sinking EDM by using self-adjusting fuzzy control. J. Mater. Process. Technol. 149(1), 204–211 (2004)

    Article  Google Scholar 

  14. B. Sen, I. Qayamat, P.K. Singh, I. Mitral, P. Purkait, Developments in electric power supply configurations for electrical-discharge-machining (EDM). IEEE 1, 659–664 (2003)

    Google Scholar 

  15. M. Kunieda, H. Muto, Development of multi-spark EDM. Ann. CIRP 49(1), 119–122 (2000)

    Article  Google Scholar 

  16. N. Mohri, N. Saito, T. Takawashi, K. Kobayashi, Mirror-Like Finishing by EDM. Proceeding of the Machine Tool Design and Research Conference p. 329 (1985)

  17. L. Uriarte, A. Herrero, A. Ivanov, H. Oosterling, L. Staemmler, P.T. Tang, D. Allen, Comparison between Micro Fabrication Technologies for Metal Tooling. Special issue paper, Proceedings of the Institution of Mechanical Engineers, vol. 220, p. 1665 (2006)

  18. A. Ozgedik, C. Cogun, An experimental investigation of tool wear in electric discharge machining. Int. J. Adv. Manuf. Technol. 27(5–6), 488–500 (2006)

    Article  Google Scholar 

  19. H.S. Halkaci, A. Erden, Experimental Investigation of Surface Roughness in Electric Discharge Machining (EDM). 6th Biennial Conference (ESDA 2002) 1–6 (2002)

  20. W. Kurnia, P.C. Tan, S.H. Yeo, M. Wong, Analytical approximation of the erosion rate and electrode wear in micro electrical discharge machining. J. Micromech. Microeng. 18, 085011–085018 (2008)

    Article  Google Scholar 

  21. P.V. Ramarao, M.A. Faruqi, Characteristics of the surfaces obtained in electro-discharge machining. Precis. Eng. 4(2), 111–113 (1982)

    Article  Google Scholar 

  22. U. Eckart, R. Markus, Investigations on reduction of tool electrode wear in micro-EDM using novel electrode materials. CIRP J. Manuf. Sci. Technol. 1, 92–96 (2008)

    Article  Google Scholar 

  23. Y. Keskin, H.S. Halkaci, M. Kizil, An experimental study for determination of the effects of machining parameters on surface roughness in electrical discharge machining (EDM). Int. J. Adv. Manuf. Technol. 28, 1118–1121 (2006)

    Article  Google Scholar 

  24. Y.F. Luo, An investigation into the actual EDM off-time in SEA machining. J. Mater. Process. Technol. 74, 61–68 (1998)

    Article  Google Scholar 

  25. Z.Y. Yu, Y. Zhang, J. Li, J. Luan, F. Zhao, D. Guo, High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM. CIRP Ann. Manuf. Technol. 58(2), 213–216 (2009)

    Article  Google Scholar 

  26. T. Kobayashi, M. Kunieda, Development of hybrid EDM system combining multispark EDM and conventional EDM. J. Jpn. Soc. Electr. Mach. Eng. 37(84), 9–16 (2003)

    Google Scholar 

  27. V. Paunov, Surface modification of tool steels by electrical discharge treatment in electrolyte. E-J. Math. Model. Comput. Simul. 2(4), 43–50 (2014)

    Google Scholar 

  28. M.W. Chastagner, A.J. Shih, Abrasive jet machining for edge generation. Trans. N. Am. Manuf. Res. Inst. SME 35, 359–366 (2007)

    Google Scholar 

  29. R. Balasubramaniam, J. Krishnan, N. Ramakrishnan, A study on the shape of the surface generated by abrasive jet machining. J. Mater. Process. Technol. 121(1), 102–106 (2002)

    Article  Google Scholar 

  30. http://www.tedpella.com/msds_html/815-50,-76msd.htm. Accessed 01 Nov 2013

  31. C.H. Wang, Y.C. Lin, B.H. Yan, F.Y. Huang, Effect of characteristics of added powder on electric discharge machining. J. Jpn. Inst. Light Met. 42, 2597–2604 (2001)

    Google Scholar 

  32. H. Narumiya, N. Mohri, N. Saito, H. Otake, Y. Tsnekawa, T. Takawashi, K. Kobayashi, EDM by Powder Suspended Working Fluid. Proceedings of the International Symposium electromach. 5–8 (1989)

  33. H.K. Kansal, S. Singh, P. Kumar, Technology and research developments in powder mixed electric discharge machining (PMEDM). J. Mater. Process. Technol. 184, 32–41 (2007)

    Article  Google Scholar 

  34. P. Pecas, E.A. Henriques, Influence of silicon powder mixed dielectric on conventional electrical discharge machining. Int. J. Mach. Tools Manuf. 43, 1465–1471 (2003)

    Article  Google Scholar 

  35. Y.S. Wong, L.C. Lim, I. Rahuman, W.M. Tee, Near-mirror-finish phenomenon in EDM using powder-mixed. J. Mater. Process. Technol. 79, 30–40 (1998)

    Article  Google Scholar 

  36. K.P. Rajurkar, J. Kozak, Hybrid Machining Process Evaluation and Development (Keynote Paper, Krakow, 1999)

    Google Scholar 

  37. http://www.columbia.edu/cu/mechanical/mrl/ntm/CrossProcess/CrossProcessSect2.htm. Accessed 01 Mar 2014

  38. Y. Lin, Y. Chen, A. Wang, W. Sei, Machining performance on hybrid process of abrasive jet machining and electrical discharge machining. Trans. Nonferr. Met. Soc. China 22(3), s775–s780 (2012)

    Article  Google Scholar 

  39. S.P. Rajagopal, V. Ganesh, A.V. Lanjewar, M.R. Sankar, Past and current status of hybrid electric discharge machining (H-EDM) processes. Adv Mater. Manuf. Charact. 3(1), 111–118 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeepkumar Haribhau Wankhade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wankhade, S.H., Sharma, S.B. Study of the Productivity and Surface Quality of Hybrid EDM. J. Inst. Eng. India Ser. C 97, 71–76 (2016). https://doi.org/10.1007/s40032-015-0188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-015-0188-7

Keywords

Navigation