Skip to main content
Log in

Recent Advances in Bio-MEMS and Future Possibilities: An Overview

  • REVIEW PAPER
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Microelectromechanical systems (MEMS) are a technology that allows engineers to create small, integrated devices with electrical and mechanical components to perform tasks carried out by macroscopic systems. MEMS devices are interfaces of the digital world (computer) and the analog world (our surroundings) with the capability of sensing and controlling. System-integrated chip technology is used to make these devices. The main advantages of MEMS are lightweight, ease of fabrication, reduced size, low-power operation, and the possibility of electrical and electronic device interaction. These MEMS devices find applications in biomedical fields such as detection, analysis, diagnosis, therapeutics, drug delivery, cell culture, microsurgery, and genome synthesis. This review paper discusses recent MEMS research, emphasising biomedical applications and advances. This paper includes functional components, technologies involved in manufacturing, and current trends in Bio-MEMS devices. This study discusses the Bio-MEMS device’s accuracy, design problems, prospective applications, and new possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Putrino, G. Keating, A. Martyniuk, M. Faraone, L. Dell, Chemical and biological sensors based on microelectromechanical systems, in Nanomaterials: science and applications. (Pan Stanford Publ. Pte Ltd, Singapore, 2016), pp.107–145

    Google Scholar 

  2. N.S. Shanbhag, P.P. Patil, Bio-microelectromechanical systems: a novel approach for drug targeting in chronic diseases. New Horiz. Transl. Med. 36, 265–271 (2017)

    Google Scholar 

  3. L. Yunjia, Microelectromechanical systems (MEMS), in Material-integrated intelligent systems: technology and applications. (Wiley, New York, NY, USA, 2016), pp.83–105

    Google Scholar 

  4. M. Rafiee, P. Khatibi, G. Zehetbauer, A review of the most important failure, reliability and nonlinearity aspects in the development of microelectromechanical systems (MEMS). Microelectron. Int. 34(1), 9–21 (2017)

    Google Scholar 

  5. P. Bergveld, The challenge of developing microTAS (Springer, Dordrecht, 1955), pp.3745–3770

    Google Scholar 

  6. G. Li, X. Han, W. Sun, Y. Cheng, D. Li, A touch mode MEMS capacitance diaphragm gauge. Meas. Sens. 18, 100171 (2021)

    Google Scholar 

  7. X. Han, M. Xu, G. Li, H. Yan, Y. Feng, D. Li, Design and experiment of a touch mode MEMS capacitance vacuum gauge with square diaphragm. Sens. Actuat. A Phys. 313, 112154 (2020)

    Google Scholar 

  8. M. Xu et al., Design and fabrication of an absolute pressure MEMS capacitance vacuum sensor based on silicon bonding technology. Vacuum 186, 110065 (2021)

    Google Scholar 

  9. K. Kishore, S.S. Kumar, R. Mukhiya, S. Ali Akbar, High-resolution current mode interface for MEMS piezoresistive pressure sensor. AEU - Int. J. Electron. Commun. 134, 153707 (2021)

    Google Scholar 

  10. T. Grzebyk, K. Turczyk, P. Szyszka, A. Górecka-Drzazga, J. Dziuban, Pressure control system for vacuum MEMS. Vacuum 178, 109452 (2020)

    Google Scholar 

  11. A. Casillas, M. Modera, M. Pritoni, Using non-invasive MEMS pressure sensors for measuring building envelope air leakage. Energy Build. 233, 110653 (2021)

    Google Scholar 

  12. W. Zhang et al., Research on the influence of hydrostatic pressure on the sensitivity of bionic cilia MEMS vector hydrophone. Measurement 191, 110606 (2022)

    Google Scholar 

  13. R. Krisper, J. Lammer, Y. Pivak, E. Fisslthaler, W. Grogger, The performance of EDXS at elevated sample temperatures using a MEMS-based in situ TEM heating system. Ultramicroscopy 234, 113461 (2022)

    Google Scholar 

  14. V.F. Paes, B.A. Mueller, P.B. Costa, R.A. Rafael, M.P. Porto, Calibration uncertainty of MEMS thermopile imagers for quantitative temperature measurement. Infrared Phys. Technol. 120, 103978 (2022)

    Google Scholar 

  15. C.C. Cheng, L.H. Fang, H. Duan, C.C. Chen, T.K. Chung, A MEMS room-temperature resettable thermomagnetic-track-guided magnetic-bead manipulation integrated with magnetoresistive sensing for bead-motion monitoring. Sens. Actuat. A Phys. 332, 113087 (2021)

    Google Scholar 

  16. U. Zaghloul, B. Bhushan, G. Papaioannou, F. Coccetti, P. Pons, R. Plana, Nanotribology-based novel characterization techniques for the dielectric charging failure mechanism in electrostatically actuated NEMS/MEMS devices using force–distance curve measurements. J. Colloid Interface Sci. 365(1), 236–253 (2012)

    Google Scholar 

  17. J. Xu et al., Fabrication of ZnO nanorods and Chitosan@ZnO nanorods on MEMS piezoresistive self-actuating silicon microcantilever for humidity sensing. Sensors Actuators B Chem. 273, 276–287 (2018)

    Google Scholar 

  18. A.S. Hassan, V. Juliet, C.J.A. Raj, MEMS based humidity sensor with integration of temperature sensor. Mater. Today Proc. 5(4), 10728–10737 (2018)

    Google Scholar 

  19. M.T. Jan, F. Ahmad, N.H.B. Hamid, M.H.B.M. Khir, M. Shoaib, K. Ashraf, Experimental investigation of temperature and relative humidity effects on resonance frequency and quality factor of CMOS-MEMS paddle resonator. Microelectron. Reliab. 63, 82–89 (2016)

    Google Scholar 

  20. V.P.J. Chung, M.C. Yip, W. Fang, Resorcinol–formaldehyde aerogels for CMOS-MEMS capacitive humidity sensor. Sens. Actuat. B Chem. 214, 181–188 (2015)

    Google Scholar 

  21. B. Zhang et al., The principle and elimination of shadow image in the scanning image of the lidar based on MEMS mirror. Infrared Phys. Technol. 116, 103761 (2021)

    Google Scholar 

  22. T. Wenzel, R. Rettig, Design of MEMS microphone protective membranes for continuous outdoor applications. Appl. Acoust. 183, 108304 (2021)

    Google Scholar 

  23. A. Novak, P. Honzík, Measurement of nonlinear distortion of MEMS microphones. Appl. Acoust. 175, 107802 (2021)

    Google Scholar 

  24. A. Fawzy, A. Magdy, A. Hossam, A piezoelectric MEMS microphone optimizer platform. Alexandria Eng. J. 61(4), 3175–3186 (2022)

    Google Scholar 

  25. D. Faraci, A. Ghisi, S. Adorno, A. Corigliano, Top-down, multi-scale numerical simulation of MEMS microphones under guided free fall tests. Microelectron. Reliab. 121, 114129 (2021)

    Google Scholar 

  26. M.M. Zirkohi, Adaptive backstepping control design for MEMS gyroscope based on function approximation techniques with input saturation and output constraints. Comput. Electr. Eng. 97, 107547 (2022)

    Google Scholar 

  27. S. Luo, G. Yang, J. Li, H.M. Ouakad, Dynamic analysis, circuit realization and accelerated adaptive backstepping control of the FO MEMS gyroscope. Chaos. Solit. Fract. 155, 111735 (2022)

    Google Scholar 

  28. J. Jia et al., Overview and analysis of MEMS Coriolis vibratory ring gyroscope. Measurement 182, 109704 (2021)

    Google Scholar 

  29. H. Din, F. Iqbal, B. Lee, Mode ordering of single-drive multi-axis MEMS gyroscope for reduced cross-axis sensitivity. Sens. Actuat A Phys. 332, 113145 (2021)

    Google Scholar 

  30. S. Tariq, B. Bakhtawar, T. Zayed, Data-driven application of MEMS-based accelerometers for leak detection in water distribution networks. Sci. Total. Environ. 809, 151110 (2022)

    Google Scholar 

  31. A. Prato, F. Mazzoleni, G. D’Emilia, A. Gaspari, E. Natale, A. Schiavi, Metrological traceability of a digital 3-axis MEMS accelerometers sensor network. Measurement 184, 109925 (2021)

    Google Scholar 

  32. N.F. Morozov, D.A. Indeitsev, V.S. Igumnova, A.V. Lukin, I.A. Popov, L.V. Shtukin, Nonlinear dynamics of mode-localized MEMS accelerometer with two electrostatically coupled microbeam sensing elements. Int. J. Non. Linear. Mech. 138, 103852 (2022)

    MATH  Google Scholar 

  33. M. Chen, R. Zhu, Y. Lin, Z. Zhao, L. Che, Analysis and compensation for nonlinearity of sandwich MEMS capacitive accelerometer induced by fabrication process error. Microelectron. Eng. 252, 111672 (2022)

    Google Scholar 

  34. S. Liu, H. Liang, B. Xiong, An out-of-plane electromagnetic induction based resonant MEMS magnetometer. Sens. Actuat. A Phys. 285, 248–257 (2019)

    Google Scholar 

  35. G. Laghi et al., Torsional MEMS magnetometer operated off-resonance for in-plane magnetic field detection. Sens. Actuat. A Phys. 229, 218–226 (2015)

    Google Scholar 

  36. S. Dellea et al., Off-resonance operation of in-plane torsional MEMS magnetometers. Procedia Eng. 87, 819–822 (2014)

    Google Scholar 

  37. H. Qu, C.-L. Dai, CMOS MEMS fabrication technologies and devices. Micromachines. 7(1), 14 (2016)

    Google Scholar 

  38. G. Langfelder and A. Tocchio, “Microelectromechanical systems integrating motion and displacement sensors,” in Smart Sensors MEMS Intell. Sens. Devices Microsystems Ind. Appl. Second Ed., pp. 395–428, 2018

  39. T. Kavallaris, N.I. Suzuki, Micro-electro-mechanical-systems (MEMS). In non-local partial differential equations for engineering and biology: mathematical modeling and analysis. Math. Model Anal. 31, 3–63 (2018)

    Google Scholar 

  40. T. Anjanappa, M. Datta, K. Song, Sensors and actuators (CRC Press, New Jersey, 2017), pp.11–16

    Google Scholar 

  41. D.T.H. Giang, N.H. Duc, G. Agnus, T. Maroutian, P. Lecoeur, Fabrication and characterization of PZT string based MEMS devices. J. Sci. Adv. Mater. Dev. 1(2), 214–219 (2016)

    Google Scholar 

  42. W. Yao and R. Peddi, “Customizable silicone materials for MEMS and semiconductor packages,” Proc. IEEE/CPMT Int. Electron. Manuf. Technol. Symp., vol. 2016-November, Nov. 2016.

  43. Z. Liang, J. Guo, D. Fan, Manipulation, assembling, and actuation of nanomotors by electric tweezers. Robot. Syst. Auton. Platforms 1, 3–28 (2019)

    Google Scholar 

  44. L. Huang, P. Zhao, F. Liang, W. Wang, Single-cell 3D electro-rotation. Methods Cell Biol. 148, 97–116 (2018)

    Google Scholar 

  45. C. Chircov, A.M. Grumezescu, Microelectromechanical systems (MEMS) for biomedical applications. Micromachines. 13(2), 164 (2022)

    Google Scholar 

  46. V. Gaudin, “Receptor-based electrochemical biosensors for the detection of contaminants in food products,” Electrochem. Biosens, pp. 307–365, 2019.

  47. P. Pan, W. Wang, C. Ru, Y. Sun, X. Liu, MEMS-based platforms for mechanical manipulation and characterization of cells. J. Micromechanics Microengineering 27(12), 123003 (2017)

    Google Scholar 

  48. A. Martinez-Rivas, G.K. González-Quijano, S. Proa-Coronado, C. Séverac, E. Dague, Methods of micropatterning and manipulation of cells for biomedical applications. Micromachines 8(12), 347 (2017)

    Google Scholar 

  49. W. Wang and S. A. Soper, “Bio-MEMS : Technologies and Applications,” Bio-MEMS, Dec. 2006.

  50. O. Auciello et al., Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films. J. Phys. Condens. Matter 16(16), R539 (2004)

    Google Scholar 

  51. Y. Long, Z. Liu, and F. Ayazi, “4H-silicon carbide as an acoustic material for MEMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2023.

  52. D. José Horst, P. Paulo Andrade Junior, R. De Almeida Vieira, P. Paulo de Andrade Junior, C. Adriano Duvoisin, and R. de Almeida Vieira, “Fabrication of Conductive Filaments for 3D-printing: Polymer Nanocomposites Gestão do conhecimento e da inovação em organizações View project Assessing the Lignin Fraction Extracted from Brazilian Energy Crops View project Fabrication of Conductive Filaments for 3D-printing: Polymer Nanocomposites,” 2020.

  53. D. Qin, Y. Xia, J. A. Rogers, R. J. Jackman, X.-M. Zhao, and G. M. Whitesides, “Microfabrication, Microstructures and Microsystems,” pp. 1–20, 1998.

  54. S.H. Kenawy, A.M. Khalil, Advanced ceramics and relevant polymers for environmental and biomedical applications. Bioint. Res. Appl. Chem. 10(4), 5747–54 (2020)

    Google Scholar 

  55. Z. Zhao et al., Achieving high contact-electrification charge density on inorganic materials. Nano Energy 114, 108616 (2023)

    Google Scholar 

  56. L. Niu, X. Sun, Y. Yang, X. Yuan, H. Tong, Synergistic effect of graphene on improving laser sealing performance of inorganic glass solder. J. Mater. Sci. Mater. Electron. 34(12), 1–10 (2023)

    Google Scholar 

  57. J. Hong et al., Large scale terahertz sensor array module with antenna coupled microbolometers on glass substrate with sigma delta ADC readout ASIC, IEEE Trans. Terahertz Sci. Technol., 2023.

  58. M. Sawane, M. Prasad, MEMS piezoelectric sensor for self-powered devices: a review. Mater. Sci. Semicond. Process. 158, 107324 (2023)

    Google Scholar 

  59. M.T. Chorsi et al., Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31(1), 1802084 (2019)

    Google Scholar 

  60. Z. Dong et al., Microfabrication of functional polyimide films and microstructures for flexible MEMS applications. Microsyst. Nanoeng. 9(1), 1–22 (2023)

    Google Scholar 

  61. M.G. Thompson et al., Identification, characterization, and application of a highly sensitive lactam biosensor from pseudomonas putida. ACS Synth. Biol. 9(1), 53–62 (2020)

    Google Scholar 

  62. I. Voiculescu, A.N. Nordin, Acoustic wave based MEMS devices for biosensing applications. Biosens. Bioelectron. 33(1), 1–9 (2012)

    Google Scholar 

  63. J.X.J. Zhang, Plasmonic MEMS in biosensing and imaging (Springer, London, 2023), pp.107–181

    Google Scholar 

  64. V. Suresh, B. Rajesh Kumar, Design of piezoresistive pressure sensor for enhancing stress of MEMS cantilever. Meas. Sens. 25, 100637 (2023)

    Google Scholar 

  65. Y. Liu, Y. Tian, C. Lin, J. Miao, X. Yu, A monolithically integrated microcantilever biosensor based on partially depleted SOI CMOS technology. Microsystems Nanoeng. 9(1), 1–11 (2023)

    Google Scholar 

  66. S. Dzyadevych, N. Jaffrezic-Renault, Conductometric biosensors. Biol. Identif. DNA Amplif. Seq. Opt. Sensing, Lab-On-Chip Portable Syst. 3, 153–193 (2014)

    Google Scholar 

  67. S.P. Mohanty, E. Koucianos, Biosensors: a tutorial review. IEEE Potentials 25(2), 35–40 (2006)

    Google Scholar 

  68. D.S. Eddy, D.R. Sparks, Application of MEMS technology in automotive sensors and actuators. Proc. IEEE 86(8), 1747–1755 (1998)

    Google Scholar 

  69. S. Bütefisch, V. Seidemann, S. Büttgenbach, Novel micro-pneumatic actuator for MEMS. Sensors Actuators A Phys. 97–98, 638–645 (2002)

    Google Scholar 

  70. H. Ernst, A. Jachimowicz, G.A. Urban, High resolution flow characterization in Bio-MEMS. Sensors Actuators A Phys. 100(1), 54–62 (2002)

    Google Scholar 

  71. K. Bespalova, T. Nieminen, A. Gabrelian, G. Ross, M. Paulasto-Kröckel, In-plane AlN-based actuator: toward a new generation of piezoelectric MEMS. Adv. Electron. Mater. 9, 2300015 (2023)

    Google Scholar 

  72. B. Sotoudeh, S. Afrang, S. Ghasemi, O.R. Afrang, Design and simulation of a wide-range variable MEMS capacitor using electrostatic and piezoelectric actuators. Microsyst. Technol. 2023, 1–13 (2023)

    Google Scholar 

  73. M.J. Ramsay, W.W. Clark, Piezoelectric energy harvesting for bio-MEMS applications. Proc. SPIE 4332, 429–438 (2001)

    Google Scholar 

  74. M.I. Hossain, M.S. Zahid, M.A. Chowdhury, M.M. Maruf Hossain, N. Hossain, MEMS-based energy harvesting devices for low-power applications–a review. Results Eng. 19, 101264 (2023)

    Google Scholar 

  75. H. Toshiyoshi, S. Ju, H. Honma, C.H. Ji, H. Fujita, MEMS vibrational energy harvesters. Taylor Fr. 20(1), 124–143 (2019)

    Google Scholar 

  76. C. Wang, L. Taherabadi, G. Jia, M. Madou, Y. Yeh, B. Dunn, C-MEMS for the manufacture of 3D microbatteries. Electrochem. Solid-State Lett. 7(11), A435 (2004)

    Google Scholar 

  77. L.J. Tang, M.H. Wang, H.C. Tian, X.Y. Kang, W. Hong, J.Q. Liu, Progress in research of flexible MEMS microelectrodes for neural interface. Micromachines 8(9), 281 (2017)

    Google Scholar 

  78. M. Preeti, K. Guha, K.L. Baishnab, K. Dusarlapudi, K. Narasimha Raju, Low frequency MEMS accelerometers in health monitoring–A review based on material and design aspects. Mater. Today Proc. 18, 2152–2157 (2019)

    Google Scholar 

  79. A. Albarbar, A. Badri, J.K. Sinha, A. Starr, Performance evaluation of MEMS accelerometers. Measurement 42(5), 790–795 (2009)

    Google Scholar 

  80. X. Gong, Y.C. Kuo, G. Zhou, W.J. Wu, W.H. Liao, An aerosol deposition based MEMS piezoelectric accelerometer for low noise measurement. Microsyst. Nanoeng. 9(1), 1–13 (2023)

    Google Scholar 

  81. M. Rudra Naik, U.N. Kempaiah, Directional optimization of MEMS piezoelectric hydrophone for underwater application. Mater. Today Proc. 5(1), 823–829 (2018)

    Google Scholar 

  82. S. Wu et al., MEMS co-vibration combined hydrophone. Measurement 208, 112463 (2023)

    Google Scholar 

  83. T. S. K. Beulah Sujan, Bio-MEMS cantilever sensor design and analysis for detecting multiple diseases, in IEEE International Conference on Circuits and Systems, 2017.

  84. Z. H. Xin, H. Y. Sun, and D. B. Wang, A High-performance Dual-channel MEMS Microwave Power Sensor with Cantilever Beam. IEEE Sens. J. 2023

  85. S. Gorthi, A. Mohanty, A. Chatterjee, Cantilever beam electrostatic MEMS actuators beyond pull-in. J. Micromechan. Microeng. 16(9), 1800 (2006)

    Google Scholar 

  86. C.-Y. Tsai, N.-C. Sue, Review of MEMS-based drug delivery and dosing systems. Sens. Actuat. A Phys. 134(2), 555–564 (2007)

    Google Scholar 

  87. N.T. Nguyen, X. Huang, T.K. Chuan, MEMS-micropumps: a review. J. Fluids Eng. 124(2), 384–392 (2002)

    Google Scholar 

  88. H. Gensler, R. Sheybani, P. Y. Li, R. Lo Mann, and E. Meng, “An implantable MEMS micropump system for drug delivery in small animals. Biomed. Microdevices, 14(3)

  89. A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, MEMS-based micropumps in drug delivery and biomedical applications. Sen. Actuators B Chem. 130(2), 917–942 (2008)

    Google Scholar 

  90. J.M. Bustjllo, R.T. Howe, R.S. Muller, Surface micromachining for microelectromechanical systems. Proc. IEEE 86(8), 1552–1573 (1998)

    Google Scholar 

  91. M. Keshavarzi, J. Yavand Hasani, Design and optimization of fully differential capacitive MEMS accelerometer based on surface micromachining. Microsyst. Technol. 25(4), 1369–1377 (2019)

    Google Scholar 

  92. H. Feng et al., Design and simulation of a low pull-in voltage RF MEMS switch in series for X-band, in 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence, pp. 744–750, May 2023.

  93. S. Kim, H.G. Yeo, J. Ryu, H. Choi, Fabrication of surface-micromachined circular piezoelectric micromachined ultrasonic transducers with various etching holes using XeF2 and simulation of their vibrational characteristics. Sens. Actuat. A Phys. 351, 114159 (2023)

    Google Scholar 

  94. J. Singh, R. Kant, A. Nimesh, N. Katiyar, and S. Bhattacharya, “Evaluating electrochemical micromachining capabilities for industrial applications: a review. Taylor Fr., 2023.

  95. A. R. Kolahdouz-Moghaddam, S. Nabavi, and F. Nabki, Temperature dependence modeling and thermal sensitivity reduction of bulk micromachined silicon MEMS Lamé Resonators. J. Microelectromechanical Syst., 2023.

  96. F. Gaiseanu, “Analytical Modeling for Fabrication of Biomedical Pressure Sensors by Bulk Micromachining Technology: Silicon Capacitive Pressure Sensors,” IGI-Global, pp. 1–19, Jan. 1AD.

  97. N. Maheshwari, G. Chatterjee, V. R.-J. ISSS, (2014) A technology overview and applications of bio-MEMS,” Citeseer. 3(2): 39–59

  98. J. P. Dudeja, Micromachining of Polymeric Bio-MEMS with Lasers. IJCRT, 6(4) 2018.

  99. F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24), 6121–6130 (2010)

    Google Scholar 

  100. A.A.Z.S. Amin Yavaria, M. Croesa, B. Akhavan, F. Jahanmarda, C.C. Eigenhuis, S. Dadbakhshe, C. Vogely, M.M. Bilek, A.C. Fluit, C.H.E. Boel, B.C.H. van der Wala, T. Vermonden, H. Weinans, Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Addit. Manuf. 32, 100991 (2020)

    Google Scholar 

  101. G. Ciuti, L. Ricotti, A. Menciassi, P. Dario, MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy. Sensors 15(3), 6441–6468 (2015)

    Google Scholar 

  102. G. Zhang, M. Liu, N. Guo, W. Zhang, Design of the MEMS piezoresistive electronic heart sound sensor. Sensors 16(11), 1728 (2016)

    Google Scholar 

  103. S.I.K. Uchiyama, M.T. Sawazaki, H. Shimizu, Development of a Bio-MEMS for evaluation of dioxin toxicity by immunoassay method. Sens. Actuat. B Chem. 103(1–2), 200–205 (2004)

    Google Scholar 

  104. V.R.E.Y. Chow, S.P. Sanghani, Emerging research in wireless and MEMS for medical applications. Wirel. MEMS Networks Appl. 1, 153–175 (2017)

    Google Scholar 

  105. U. F. & H. W. Shengbo Sang, “Concept of a Microfluidics and Tunneling Effect-Based BioMEMS to Detect Cells, in: World Congress on Medical Physics and Biomedical Engineering, 7-12, 2009, Munich, Germany: Vol. 25/8 Micro-and Nanosystems in Medicine, Active Implants, pp. 144–147, 2009.

  106. H. Sung Keun, Y. Jin, H. Leeb, M.B. Sung-SikYuna, G. Jong, Fabrication of a bio-MEMS based cell-chip for toxicity monitoring. Biosens. Bioelectron. 22(8), 1586–1592 (2007)

    Google Scholar 

  107. V. Giorgio De Pasquale, L. Zappulla, L. Scaltrito, Numerical and experimental evaluation of SLA polymers adhesion for innovative bio-MEMS. Mater. Today. 7(1), 572–577 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudhishthir Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, Y., Singh, S.P. Recent Advances in Bio-MEMS and Future Possibilities: An Overview. J. Inst. Eng. India Ser. B 104, 1377–1388 (2023). https://doi.org/10.1007/s40031-023-00924-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-023-00924-w

Keywords

Navigation