Skip to main content

Advertisement

Log in

Design of Cost Effective PV/Battery System for Household Application: Case Study at Remote Areas in Madurai, Tamil Nadu

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

All around the world, the utilization of energy is drastically increasing day by day. The electricity generation using renewable energy resources has become a more authentic source to meet the needs of isolated remote areas. This article proposes an off-grid (Stand-alone) Photovoltaic (PV), Battery Energy Storage System, Diesel Generator system for electrification of residential household load in a rural area of Madurai, Tamilnadu. Hybrid Optimization Model for Electric Renewable is used to perform techno-economic analysis for designing solar PV/Battery system to meet out the requirements of load. Moreover, the obtained Total Net Present Cost (NPC) and Cost of Electricity (COE) and emissions of the proposed optimized system were significantly reduced. The configuration of the proposed system shows that solar electrical production is 68.4% and diesel emissions are 21.3%. The electricity generation using off-grid designed system cost is lower than conventional energy system. The result shows that the designed system is technically-economical and viable based on obtained NPC and COE results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.Y. Lau, C.W. Tan, A.H.M. Yatim, Photovoltaic systems for Malaysian islands: Effects of interest rates, diesel prices and load sizes. Energy 83, 204–216 (2015). https://doi.org/10.1016/j.energy.2015.02.015

    Article  Google Scholar 

  2. T. Ma, H. Yang, Lu. Lin, A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island. Appl. Energy 121, 149–158 (2014). https://doi.org/10.1016/j.apenergy.2014.01.090

    Article  Google Scholar 

  3. M. Hossain, S. Mekhilef, L. Olatomiwa, Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia. Sustain. Cities Soc. 28, 358–366 (2017). https://doi.org/10.1016/j.scs.2016.10.008

    Article  Google Scholar 

  4. M.S. Javed, A. Song, T. Ma, Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm. Energy 176, 704–717 (2019). https://doi.org/10.1016/j.energy.2019.03.131

    Article  Google Scholar 

  5. W. Cai, X. Li, A. Maleki, F. Pourfayaz, M.A. Rosen, M.A. Nazari, D.T. Bui, Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology. Energy 201, 117480 (2020). https://doi.org/10.1016/j.energy.2020.117480

    Article  Google Scholar 

  6. E.S. Hrayshat, Techno-economic analysis of autonomous hybrid photovoltaic-diesel-battery system. Energy Sustain. Dev. 13(3), 143–150 (2009). https://doi.org/10.1016/j.esd.2009.07.003

    Article  Google Scholar 

  7. B.K. Das, F. Zaman, Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection. Energy 169, 263–276 (2019). https://doi.org/10.1016/j.energy.2018.12.014

    Article  Google Scholar 

  8. X. Lemaire, Off-grid electrification with solar home systems: the experience of a fee-for-service concession in South Africa. Energy Sustain. Dev. 15, 277–283 (2011). https://doi.org/10.1016/j.esd.2011.07.005

    Article  Google Scholar 

  9. D. Palit, A. Chaurey, Off-grid rural electrification experiences from South Asia: Status and best practices. Energy Sustain. Dev. 15(3), 266–276 (2011). https://doi.org/10.1016/j.esd.2011.07.004

    Article  Google Scholar 

  10. C. Li, Yu. Weiyan, Techno-economic comparative analysis of off-grid hybrid photovoltaic/diesel/battery and photovoltaic/battery power systems for a household in Urumqi, China. J. Cleaner Prod. 124, 258–265 (2016). https://doi.org/10.1016/j.jclepro.2016.03.002

    Article  Google Scholar 

  11. O. Lanre, S. Mekhilef, A.S.N. Huda, K. Sanusi, Techno-economic analysis of hybrid PV–diesel–battery and PV–wind–diesel–battery power systems for mobile BTS: the way forward for rural development. Energy Sci. Eng. 3, 271–285 (2015). https://doi.org/10.1002/ese3.71

    Article  Google Scholar 

  12. Laith M. Halabi et al., Performance analysis of hybrid PV/diesel/battery system using HOMER: a case study Sabah, Malaysia. Energy Convers. Manag. 144, 322–339 (2017). https://doi.org/10.1016/j.enconman.2017.04.070

    Article  Google Scholar 

  13. N. Phuangpornpitak, S. Kumar, PV hybrid systems for rural electrification in Thailand. Renew. Sustain. Energy Rev. 11, 1530–1543 (2007). https://doi.org/10.1016/j.rser.2005.11.008

    Article  Google Scholar 

  14. I. Abouzahr, R. Ramakumar, Loss of power supply probability of stand-alone photovoltaic systems: a closed form solution approach. IEEE Trans. Energy Convers. 6(1), 1–11 (1991)

    Article  Google Scholar 

  15. C.W. Ajan, S. Shahnawaz Ahmed, H.B. Ahmad, F. Taha, A.B. Abdullah, M. Zin, On the policy of photovoltaic and diesel generation mix for an off-grid site: East Malaysian perspectives. Solar Energy 74(6), 453–467 (2003). https://doi.org/10.1016/S0038-092X(03)00228-7

    Article  Google Scholar 

  16. I. Sharif, M. Mithila, Rural electrification using PV: the success story of Bangladesh. Energy Procedia 33, 343–354 (2013). https://doi.org/10.1016/j.egypro.2013.05.075

    Article  Google Scholar 

  17. A. Tamer Khatib, K. Mohamed, M. Sopian, Optimal sizing of building integrated hybrid PV/diesel generator system for zero load rejection for Malaysia. Energy Build. 43(12), 3430–3435 (2011). https://doi.org/10.1016/j.enbuild.2011.09.008

    Article  Google Scholar 

  18. D. Neves, C.A. Silva, S. Connors, Design and implementation of hybrid renewable energy systems on micro-communities: a review on case studies. Renew. Sustain. Energy Rev. 31, 935–946 (2014). https://doi.org/10.1016/j.rser.2013.12.047

    Article  Google Scholar 

  19. L. Olatomiwa, S. Mekhilef, O.S. Ohunakin, Hybrid renewable power supply for rural health clinics (RHC) in six geo-political zones of Nigeria. Sustain. Energy Technol. Assess. 13, 1–12 (2016). https://doi.org/10.1016/j.seta.2015.11.001

    Article  Google Scholar 

  20. R. Belfkira, Lu. Zhang, G. Barakat, Optimal sizing study of hybrid wind/PV/diesel power generation unit. Solar Energy 85, 100–110 (2011). https://doi.org/10.1016/j.solener.2010.10.018

    Article  Google Scholar 

  21. A.M..A.. Haidar, P.N. John, M. Shawal, Optimal configuration assessment of renewable energy in Malaysia. Renew. Energy 36(2), 881–888 (2011). https://doi.org/10.1016/j.renene.2010.07.024

    Article  Google Scholar 

  22. L. Olatomiwa, M.S. Saad Mekhilef, M. Ismail, Energy management strategies in hybrid renewable energy systems: a review. Renew. Sustain. Energy Rev. 62, 821–835 (2016). https://doi.org/10.1016/j.rser.2016.05.040

    Article  Google Scholar 

  23. M.A..M.. Ramli, A. Hiendro, Y.A. Al-Turki, Techno-economic energy analysis of wind/solar hybrid system: case study for western coastal area of Saudi Arabia. Renew. Energy 91, 374–385 (2016). https://doi.org/10.1016/j.renene.2016.01.071

    Article  Google Scholar 

  24. L. Dagher, H. Harajli, Willingness to pay for green power in an unreliable electricity sector: Part 1. The case of the Lebanese residential sector. Renew. Sustain. Energy Rev. 50, 1634–1642 (2015). https://doi.org/10.1016/j.rser.2015.04.162

    Article  Google Scholar 

  25. Tamer Khatib, A. Mohamed, K. Sopian, A review of photovoltaic systems size optimization techniques. Renew. Sustain. Energy Rev. 22, 454–465 (2013). https://doi.org/10.1016/j.rser.2013.02.023

    Article  Google Scholar 

  26. K. Karakoulidis, K. Mavridis, D.V. Bandekas, P. Adoniadis, C. Potolias, N. Vordos, Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system. Renew. Energy 36, 2238–2244 (2011). https://doi.org/10.1016/j.renene.2010.12.003

    Article  Google Scholar 

  27. D. Saheb-Koussa, M. Haddadi, M. Belhamel, Economic and technical study of a hybrid system (wind–photovoltaic–diesel) for rural electrification in Algeria. Appl. Energy 86(7–8), 1024–1030 (2009). https://doi.org/10.1016/j.apenergy.2008.10.015

    Article  Google Scholar 

  28. O.D. Ohijeagbon, O.O. Ajayi, Solar regime and LVOE of PV embedded generation systems in Nigeria. Renew. Energy 78, 226–235 (2015). https://doi.org/10.1016/j.renene.2015.01.014

    Article  Google Scholar 

  29. M. Baneshi, F. Hadianfard, Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Convers. Manage. 127, 233–244 (2016). https://doi.org/10.1016/j.enconman.2016.09.008

    Article  Google Scholar 

  30. J. Hazelton, A. Bruce, I. MacGill, A review of the potential benefits and risks of photovoltaic hybrid mini-grid systems. Renew. Energy 67, 222–229 (2014). https://doi.org/10.1016/j.renene.2013.11.026

    Article  Google Scholar 

  31. A. Ghafoor, A. Munir, Design and economics analysis of an off-grid PV system for household electrification. Renew. Sustain. Energy Rev. 42, 496–502 (2015). https://doi.org/10.1016/j.rser.2014.10.012

    Article  Google Scholar 

  32. M.K. Shahzad, A. Zahid, T. Rashid, M.A. Rehan, M. Ali, M. Ahmad, Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renew. Energy. 106, 264–273 (2017). https://doi.org/10.1016/j.renene.2017.01.033

    Article  Google Scholar 

  33. P. Kumar, R. Pukale, N. Kumabhar, U. Patil, Optimal design configuration using HOMER. Procedia Technol. 24, 499–504 (2016). https://doi.org/10.1016/j.protcy.2016.05.085

    Article  Google Scholar 

  34. C. Mokhtara, B. Negrou, A. Bouferrouk, Y. Yao, N. Settou, M. Ramadan, Integrated supply–demand energy management for optimal design of off-grid hybrid renewable energy systems for residential electrification in arid climates. Energy Convers. Manag. 221, 113192 (2020). https://doi.org/10.1016/j.enconman.2020.113192

    Article  Google Scholar 

  35. J. Li, P. Liu, Z. Li, Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: a case study of west China. Energy 208, 118387 (2020). https://doi.org/10.1016/j.energy.2020.118387

    Article  Google Scholar 

  36. “Various resources generation capacity in Madurai," https://urbanemissions.info/india-apna/madurai-india/.

  37. NREL and NASA meteorological data and simulation performance, “HOMER,” Available at http://www.homerenergy.com.

  38. “Total emission parameters and particulate matter of the city,” https://urbanemissions.info/india-apna/madurai-india/.

Download references

Acknowledgements

The authors express their gratitude to the respective college management for supporting us to carry out this research work.

Funding

The authors have not disclosed any funding. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Charles Raja.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishanthy, J., Charles Raja, S. & Arul Jeyaraj, K. Design of Cost Effective PV/Battery System for Household Application: Case Study at Remote Areas in Madurai, Tamil Nadu. J. Inst. Eng. India Ser. B 103, 1069–1082 (2022). https://doi.org/10.1007/s40031-022-00741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-022-00741-7

Keywords

Navigation