Abstract
Power system security assessment and enhancement are two major crucial issues in a large interconnected power system. System security can be classified on the basis of major functions that are carried out in control centers, namely system monitoring, contingency analysis and security enhancement. The key element involved in security assessment is contingency analysis. In realtime, all contingencies may not cause same severity level. To eliminate nonviolation cases and select only critical cases, called contingency analysis, the idea of severity/performance indices seems to fulfill this need. Security enhancement incorporates security constrained optimal power flow (SCOPF) which ensures that system is operating at normal state by taking preventive and corrective control actions so that no contingencies result in violations. SCOPF recommends controller actions to optimize specific objective function such as fuel cost, power losses, emission that subject to a set of power system operating constraints. This paper presents a literature review on two topics which are reviewed in chronological order of appearance; security assessment and enhancement. We explore both traditional and soft computing techniques for assessing system security and enhancement of the power system and also identify key areas for future research.
This is a preview of subscription content, access via your institution.
Abbreviations
 \(P_{k}\) :

Active power flow in kth line
 \(P_{k}^{\hbox{max} }\) :

Maximum active power flow in kth line
 \({\text{nl}},\,{\text{nb}}\) :

Total number of lines and buses in the network
 \(n\) :

Exponent component of index
 \(w_{i}\) :

Weighing factor
 \(V_{i}\) :

Voltage magnitude of ith bus
 \(V_{{i,{\text{sp}}}}\) :

Specified voltage of ith bus
 \(\Delta V_{i}^{\lim }\) :

Maximum voltage deviation in ith bus
 \(P_{\text{LV}} ,\,P_{{{\text{L}}\delta }}\) :

Severity indices related to voltage and phase angles
 \(G_{ik}\) :

Conductance of the transmission line connected between bus i and k
 \(\delta_{i}\) :

Phase angle of ith bus
 \(d_{{{\text{v}},i}}^{\text{u}} ,\,d_{{{\text{v}},i}}^{\text{l}}\) :

Upper and lower voltage limits of ith bus
 \(F_{i}^{\text{u}} ,\,F_{i}^{\text{l}}\) :

Upper and lower voltage alarm limits of ith bus
 \(g_{{{\text{v}},i}}^{\text{u}} ,\,g_{{{\text{v}},i}}^{\text{l}}\) :

Normalized upper and lower factors
 \(V_{i}^{\text{d}}\) :

Desired voltage at each bus
 \(V_{i}^{\text{u}} ,\,V_{i}^{\text{l}}\) :

Upper and lower voltage security limits
 \(d_{\text{p,j}} ,g_{{{\text{p}},j}}\) :

Line limits violation vector and normalized vector
 \(P_{{{\text{p}},j}} ,\,P_{{{\text{F}},j}}\) :

Security and alarm power flow limits
 \(\left {P_{j} } \right\) :

Absolute value of the power flows in the jth line
 \(\bar{\theta }\) :

Generator rotor angle
 \(t_{\text{c1}}\) :

Fault clearance time
 \({\text{NG}}\) :

Number of generators
 \(T\) :

Length of period after fault clearing
 \(V_{\text{ke}} ,\,V_{\text{pe}}\) :

Transient kinetic and potential energy
 \(M_{i}\) :

Inertia of ith generator
 \(M_{\text{T}}\) :

Total inertia of all generators
 \(P_{\text{a}}\) :

Accelerating power
 \(P_{\text{mi}}\) :

Mechanical input power
 \(P_{\text{ei}}\) :

Electrical output power
 \(\theta_{i} ,\,\theta_{i}^{\text{cl}}\) :

Rotor angles with respective to COI and fault clearing time of ith generator
 \(\delta_{{{\text{c}}i,\hbox{max} }}\) :

Maximum load angle deviation
 \(\delta_{{{\text{c}},\hbox{max} ,{\text{adm}}}}\) :

Maximum admissible load angle deviation is given by the relay
 \(\Delta f_{i,\hbox{max} }\) :

Maximum frequency deviation
 \(\Delta f_{{\hbox{max} ,{\text{adm}}}}\) :

Maximum admissible frequency deviation
 \(v_{i,\hbox{min} }\) :

Minimum instantaneous voltage during transients
 \(v_{{i,\hbox{min} ,{\text{adm}}}}\) :

Minimum admissible voltage
 \(\Delta v_{{i,{\text{aft}}}}\) :

Voltage deviation at the end of transient period
 \(\Delta v_{i,\lim }\) :

Maximum voltage deviation
 \(P_{{i,{\text{aft}}}}\) :

Power flow through the line at the end of transient period
 \(P_{i,\lim }\) :

Maximum admissible power flow
 \(\delta_{\text{coa}}\) :

Centre of load angle
References
 1.
B. Stott, O. Alsac, A.J. Monticelli, Security analysis and optimization. Proc. IEEE 75(12), 1623–1644 (1987)
 2.
N. Balu, T. Bertram, A. Bose, Online power system security analysis. Proc. IEEE 80(2), 262–280 (1992)
 3.
N. A. E. R. Council, Reliability Concepts in Bulk Power Electric Systems (1985)
 4.
K. Morison, L. Wang, P. Kundur, Power system security assessment. IEEE Power Energy Mag. 2, 30–39 (2004)
 5.
A.J. Wood, B.F. Wollenberg, Power Generation Operation and Control, 2nd edn. (Wiley India Private Limited, New Delhi, 2006)
 6.
R.P. Schulz, W.W. Price, Classification and identification of power system emergencies. IEEE Trans. Power Appar. Syst. 103(12), 3470–3479 (1984)
 7.
EPRI Rep. EPRI EL5290, CompositeSystem Reliability Evaluation: Phase I—Scoping Study
 8.
F.F. Wu, Realtime network security monitoring, assessment and optimization. Int. J. Electr. Power Energy Syst. 10(2), 83–100 (1988)
 9.
H. Glavitsch, Switching as means of control in the power system. Int. J. Electr. Power Energy Syst. 7(2), 92–100 (1985)
 10.
M. Shahidehpour, W.F. Tinney, Y. Fu, Impact of security on power systems operation. Proc. IEEE 93(11), 2013–2025 (2005)
 11.
G.C. Ejebe, B.F. Wollenberg, Automatic contingency selection. IEEE Trans. Power Appar. Syst. 98(1), 97–109 (1979)
 12.
R. Caglar, A. Ozdemir, F. Mekic, Contingency selection based on real power transmission losses, PowerTech Budapest 99. Abstract Records. (Cat. No.99EX376), vol. C, no. 11, p. 1982 (1999)
 13.
K. Nara, K. Tanaka, H. Kodama, R.R. Shoults, M.S. Chen, P. Van Olinda, D. Bertagnolli, Online contingency selection algorithm for voltage security analysis. IEEE Trans. Power Appar. Syst. 104(4), 846–856 (1985)
 14.
R. Sunitha, K.R. Sreerama, A.T. Mathew, Development of a composite security index for static security evaluation, in IEEE Region Annual International Conference, Proceedings/TENCON, pp. 1–6, 2009
 15.
B. Stott, O. Alsac, Fast decoupled load flow. IEEE Trans. Power Appar. Syst. 93(3), 859–869 (1974)
 16.
A.J. Wood, B.F. Wollenberg, Power Generation, Operation and Control, 2nd edn. (Wiley, New York, 1996)
 17.
P.W. Sauer, On the formulation of power distribution factors for linear load flow methods. IEEE Trans. Power Appar. Syst. 100(2), 764–770 (1981)
 18.
A. Mohamed, G.B. Jasmon, Voltage contingency selection technique for security assessment. IEEE Proc. Gener. Transm. Distrib. 136(1), 24 (1989)
 19.
C.I. Faustino Agreira, C.M. MacHado Ferreira, J.A. Dias Pinto, F.P. MacIel Barbosa, Contingency screening and ranking algorithm using two different sets of security performance indices, in 2003 IEEE Bologna PowerTech  Conference Proceedings, vol. 4, pp. 155–159 (2003)
 20.
G. Irisarri, A. Sasson, An automatic contingency selection method for online security analysis. IEEE Trans. Power Appar. Syst. 100(4), 1838–1844 (1981)
 21.
T.A. Mikolinnas, B.F. Wollenberg, An advanced contingency selection algorithm. IEEE Trans. Power Appar. Syst. 100(2), 608–617 (1981)
 22.
T.F. Halpin, R. Fischl, R. Fink, Analysis of automatic contingency selection algorithms. IEEE Trans. Power Appar. Syst. 103(5), 938–945 (1984)
 23.
K.L. Lo, Z. Meng, Newtonlike method for line outage simulation. IEE Proc. Gener. Transm. Distrib. 151, 225–231 (2004)
 24.
J. Zaborszky, K.W. Whang, K. Prasad, Fast contingency evaluation using concentric relaxation. IEEE Trans. Power Appar. Syst. 99(1), 28–36 (1980)
 25.
V. Brandwajn, Efficient bounding method for linear contingency analysis. IEEE Trans. Power Syst. 3(1), 38–43 (1987)
 26.
V. Brandwajn, M.G. Lauby, Complete bounding method for AC contingency screening. IEEE Trans. Power Syst. 4(2), 724–729 (1989)
 27.
F.D. Galiana, Bound estimates of the severity of line outages in power system contingency analysis and ranking. IEEE Trans. Power Appar. Syst. 103(9), 2612–2624 (1984)
 28.
G.C. Ejebe, H.P. Van Meeteren, B.F. Wollenberg, Fast contingency screening and evaluation for voltage security analysis. IEEE Trans. Power Syst. 3(4), 1582–1590 (1988)
 29.
S.N. Singh, S.C. Srivastava, Improved voltage and reactive power distribution factors for outage studies. IEEE Trans. Power Syst. 12(3), 1085–1093 (1997)
 30.
R. Diao, S. Member, K. Sun, V. Vittal, R.J.O. Keefe, M.R. Richardson, N. Bhatt, D. Stradford, S.K. Sarawgi, Decision treebased online voltage security assessment using PMU measurements. IEEE Trans. Power Syst. 24(2), 832–839 (2009)
 31.
S. Weerasooriya, M.A. ElSharkawi, M. Damborg, R.J. Marks, Towards staticsecurity assessment of a largescale power system using neural networks. IEE Proc. C Gener. Transm. Distrib. 139(1), 64 (1992)
 32.
Q. Zhou, J. Davidson, A.A. Fouad, Application of artificial neural networks in power system security and vulnerability assessment. IEEE Trans. Power Syst. 9(1), 525–532 (1994)
 33.
M. Khazaei, S. Jadid, Contingency ranking using neural networks by Radial Basis Function method, in 2008 IEEE/PES Transmission and Distribution Conference and Exposition, pp. 25–28, 2008
 34.
S. Kalyani, K.S. Swarup, Study of neural network models for security assessment in power systems,” vol. 1, no. 2 (2009)
 35.
A. I.G. Dagmar Niebur, Power system static security assessment using the kohonenneuralnetworkclassifier (1991)
 36.
D. Niebur, A.J. Germond, Power system static security assessment using the Kohonen neural network classifier. IEEE Trans. Power Syst. 7(2), 865–872 (1992)
 37.
D. Devaraj, J. Preetha Roselyn, Online voltage stability assessment using radial basis function network model with reduced input features. In. J. Electr. Power Energy Syst. 33(9), 1550–1555 (2011)
 38.
D. Devaraj, B. Yegnanarayana, K. Ramar, Radial basis function networks for fast contingency ranking. Int. J. Electr. Power Energy Syst. 24, 387–395 (2002)
 39.
R. Fischl, Application of neural networks to power system security: technology and trends, in Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), vol. 6, pp. 3719–3723, 1901
 40.
R. Napoli, F. Piglione, Online static security assessment of power systems by a progressive learning neural network, Proceedings of 8th Mediterranean Electrotechnical Conference on Industrial Applications in Power Systems, Computer Science and Telecommunications (MELECON 96), vol. 3, 1996
 41.
D.S. Javan, H.R. Mashhadi, M. Rouhani, Static security assessment using radial basis function neural networks based on growing and pruning method, in 2010 IEEE Electrical Power & Energy Conference, pp. 1–6, 2010
 42.
H.M. Khattab, S.F. Abdelaziz, A.Y. Mekhamer, M.A.L. Badr, E.F. ElSaadany, Gene expression programming for static security assessment of power systems. IEEE Power Energy Soc. Gener. Meet. 2012, 1–8 (2012)
 43.
A.Y. Abdelaziz, S.F. Mekhamer, M.A.L. Badr, H.M. Khattab, Probabilistic neural network classifier for static voltage security assessment of power systems. Electr. Power Compon. Syst. 40(2), 147–160 (2011)
 44.
T.S. Sidhu, Contingency screening for steadystate security analysis by using FFT and artificial neural networks”. IEEE Trans. Power Syst. 15(I), 421–426 (2000)
 45.
S.N. Singh, L. Srivastava, J. Sharma, Fast voltage contingency screening using radial basis function neural network. Electr. Power Syst. Res. 18(4), 1359–1366 (2003)
 46.
R.K. Misra, S.P. Singh, Efficient ANN method for postcontingency status evaluation. Int. J. Electr. Power Energy Syst. 32(1), 54–62 (2010)
 47.
K.S. Swarup, Artificial neural network using pattern recognition for security assessment and analysis. Neurocomputing 71(4–6), 983–998 (2008)
 48.
S. Kalyani, K. Shanti Swarup, Classification and assessment of power system security using multiclass SVM. IEEE Trans. Syst. Man Cybern. Appl. Rev. 41(5), 753–758 (2011)
 49.
S.W. Lin, K.C. Ying, S.C. Chen, Z.J. Lee, Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008)
 50.
Z. Shaowu, W. Lianghong, Y. Xiaofang, T. Wen, Parameters selection of SVM for function approximation based on differential evolution, in Proceedings on Intelligent Systems and Knowledge Engineering (ISKE2007), 2007
 51.
S.J. Huang, Static security assessment of a power system using querybased learning approaches with genetic enhancement. IEEE Proc. Gener. Transm. Distrib. 148(4), 319 (2001)
 52.
S. Noman, S.M. Shamsuddin, A.E. Hassanien, Hybrid learning enhancement of RBF network with particle swarm optimization. Foundations 1, 381–397 (2009)
 53.
S. Kalyani, K.S. Swarup, Particle swarm optimization based Kmeans clustering approach for security assessment in power systems. Expert Syst. Appl. 38(9), 10839–10846 (2011)
 54.
A. Mohamed, S. Maniruzzaman, A. Hussain, Static security assessment of a power system using geneticbased neural network. Electr. Power Compon. Syst. 29(12), 1111–1121 (2001)
 55.
S. Hashemi, M.R. Aghamohammadi, Wavelet based feature extraction of voltage profile for online voltage stability assessment using RBF neural network. Int. J. Electr. Power Energy Syst. 49, 86–94 (2013)
 56.
K. Morison, L. Wang, H. Hamadani, New tools for blackout prevention, in IEEE PES Power Systems Conference and Exposition, PSCE  Proceedings, pp. 319–324, 2006
 57.
U. Kerin, G. Bizjak, E. Lerch, O. Ruhle, R. Krebs, Dynamic security assessment using timedomain simulator, in IEEE/PES Power Systems Conference and Exposition, pp. 1–6, 2009
 58.
Y. Zhang, L. Wehenkel, P. Rousseaux, M. Pavella, SIME: a hybrid approach to fast transient stability assessment and contingency selection. Int. J. Electr. Power Energy Syst. 19(3), 195–208 (1997)
 59.
F.A. Rahimi, M.G. Lauby, J.N. Wrubel, K.L. Lee, Evaluation of the transient energy function method for online dynamic security analysis. IEEE Trans. Power Syst. 8(2), 497–507 (1993)
 60.
A.A. Fouad, V. Vittal, The transient energy function method. Int. J. Electr. Power Energy Syst. 10(4), 233–246 (1988)
 61.
C.L. Chang, Y.Y. Hsu, A new approach to dynamic contingency selection. IEEE Trans. Power Syst. 5(4), 1524–1528 (1990)
 62.
C.A. Baone, N. Acharya, S. Veda, N.R. Chaudhuri, Fast contingency screening and ranking for small, pp. 1–5, 2014
 63.
H.K.H. Kim, C.S.C. Singh, Steady state and dynamic security assessment in composite power systems, in Proceedings of the International Symposium on Circuits and Systems, 2003. ISCAS’03, vol. 3, pp. III–320–III–323, 2003
 64.
M. Tang, Q. Zhu, K. Yang, H. Zhang, X. Li, Simplified algorithm of voltage security correction based on sensitivity analysis method, no. 1, pp. 0–3, 2012
 65.
E. Ciapessoni, D. Cirio, S. Massucco, A. Morini, A. Pitto, F. Silvestro, Riskbased dynamic security assessment for power system operation and operational planning. Energies 10(4), 475 (2017)
 66.
M.M. Vamsichadalavada, V. Vittal, G.C. Gebe, G.D. Irisarri, J. Tong, G. Pieper, An online contingencyfiltering scheme or dynamic security assessment. IEEE Trans. Power Syst. 12(1), 153–161 (1997)
 67.
C. Fu, A. Bose, Contingency ranking based on severity indices in dynamic security analysis. IEEE Trans. Power Syst. 14(3), 980–986 (1999)
 68.
M. Mallaki, H.R. Chevari, Error reduction in contingency ranking of power systems using combined indexes, in AsiaPacific Power and Energy Engineering Conference, APPEEC, 2010
 69.
G. Li, S.M. Rovnyak, Integral square generator angle index for stability ranking and control. IEEE Trans. Power Syst. 20(2), 926–934 (2005)
 70.
J. Kim et al., Study of the effectiveness of a Korean smart transmission grid based on synchrophasor data of KWAMS. IEEE Trans. Smart Grid 4(1), 411–418 (2013)
 71.
I. Kamwa, S.R. Samantaray, G. Joos, Development of rulebased classifiers for rapid stability assessment of widearea post disturbance records, in IEEE PES General Meeting, Minneapolis, MN, pp. 1–1, 2010
 72.
A. Tiwari, V. Ajjarapu, Event identification and contingency assessment for voltage stability via PMU, in Power Symposium, 2007. NAPS ‘07. 39th North American, Las Cruces, NM, pp. 413–420, 2007
 73.
G. Ravikumar, S.A. Khaparde, Taxonomy of PMU data based catastrophic indicators for power system stability assessment. IEEE Syst. J. 99, 1–13 (2016)
 74.
J.M.G. Alvarez, P.E. Mercado, Online inference of the dynamic security level of power systems using fuzzy techniques. IEEE Trans. Power Syst. 22(2), 717–726 (2007)
 75.
J.M. Gimenez Alvarez, P.E. Mercado, A new approach for power system online DSA using distributed processing and fuzzy logic. Electr. Power Syst. Res. 77(2), 106–118 (2007)
 76.
V. Brandwajn, A.B.R. Kumar, A. Ipakchi, A. Böse, S.D. Kuo, Severity indices for contingency screening in dynamic security assessment. IEEE Trans. Power Syst. 12(3), 1136–1142 (1997)
 77.
J.M.G. Alvarez, Critical contingencies ranking for dynamic security assessment using neural networks, in 2009 15th International Conference on Intelligent System Applications to Power Systems, 2009
 78.
M.J. Hossain, H.R. Pota, M.A. Mahmud, R.A. Ramos, Investigation of the impacts of largescale wind power penetration on the angle and voltage stability of power systems. IEEE Syst. J. 6(1), 76–84 (2012)
 79.
U. Kerin, E. Lerch, Dynamic security indication in power systems with large amount of renewables, in 2012 IEEE Power and Energy Society General Meeting, pp. 1–6, 2012
 80.
Y. Xu, Z.Y. Dong, Z. Xu, K. Meng, K.P. Wong, An intelligent dynamic security assessment framework for power systems with wind power. IEEE Trans. Ind. Inf. 8(4), 995–1003 (2012)
 81.
D. Gautam, V. Vittal, T. Harbour, Impact of increased penetration of DFIGbased wind turbine generators on transient and small signal stability of power systems. IEEE Trans. Power Syst. 24(3), 1426–1434 (2009)
 82.
N. Mithulananthan, R. Shah, K.Y. Lee, Smalldisturbance angle stability control with high penetration of renewable generations. IEEE Trans. Power Syst. 29(3), 1463–1472 (2014)
 83.
A.J. Santos, Optimalpowerflow solution by Newton’s method applied to an augmented Lagrangian function. IEE Proc. Gener. Transm. Distrib. 142(1), 33 (1995)
 84.
M.K. Mangoli, K.Y. Lee, Y. Moon Park, Optimal real and reactive power control using linear programming. Electr. Power Syst. Res. 26(1), 1–10 (1993)
 85.
O. Alsac, J. Bright, M. Prais, B. Stott, Further developments in LPbased optimal power flow. IEEE Trans. Power Syst. 5(3), 697–711 (1990)
 86.
A. Monticelli, M.V.F. Pereira, S. Granville, Securityconstrained optimal power flow with postcontingency corrective rescheduling. IEEE Trans. Power Syst. 2(1), 175–180 (1987)
 87.
O. Alsac, B. Stott, Optimal load flow with steadystate security. IEEE Trans. Power Appar. Syst. 93(3), 745–751 (1974)
 88.
F.G.M. Lima, F.D. Galiana, I. Kockar, J. Munoz, Phase shifter placement in largescale systems via mixed integer linear programming. IEEE Trans. Power Syst. 18(3), 1029–1034 (2003)
 89.
M. Niu, C. Wan, Z. Xu, A review on applications of heuristic optimization algorithms for optimal power flow in modern power systems. J. Mod. Power Syst. Clean Energy 2(4), 289–297 (2014)
 90.
R.N. Banu, D. Devaraj, Multiobjective GA with fuzzy decision making for security enhancement in power system. Appl. Soft Comput. J. 12(9), 2756–2764 (2012)
 91.
L.L. Lai, J.T. Ma, R. Yokoyama, M. Zhao, Improved genetic algorithms for optimal power flow under both normal and contingent operation states. Int. J. Electr. Power Energy Syst. 19(5), 287–292 (1997)
 92.
A.G. Bakirtzis, P.N. Biskas, C.E. Zoumas, V. Petridis, Optimal power flow by enhanced genetic algorithm. IEEE Trans. Power Syst. 17, 229–236 (2002)
 93.
M.R. AlRashidi, M.E. ElHawary, Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects. IEEE Trans. Power Syst. 22(4), 2030–2038 (2007)
 94.
M.A. Abido, Optimal power flow using particle swarm optimization. Int. J. Electr. Power Energy Syst. 24(7), 563–571 (2002)
 95.
H.R.E.H. Bouchekara, M.A. Abido, Optimal power flow using differential search algorithm. Electr. Power Compon. Syst. 42, 1683–1699 (2014)
 96.
N. Amjady, H. Sharifzadeh, Security constrained optimal power flow considering detailed generator model by a new robust differential evolution algorithm. Electr. Power Syst. Res. 81(2), 740–749 (2011)
 97.
H.A. Hejazi, H.R. Mohabati, S.H. Hosseinian, M. Abedi, Differential evolution algorithm for securityconstrained energy and reserve optimization considering credible contingencies. IEEE Trans. Power Syst. 26(3), 1145–1155 (2011)
 98.
C. Thitithamrongchai, B. EuaArporn, Securityconstrained optimal power flow: a parallel selfadaptive differential evolution approach. Electr. Power Compon. Syst. 36, 280–298 (2008)
 99.
M. Varadarajan, K.S. Sworup, Solving multiobjective optimal power flow Using differential evolution. IET Gener. Transm. Distrib. 2(5), 720–730 (2008)
 100.
P. Somasundaram, K. Kuppusamy, R.P. Kumudini Devi, Evolutionary programming based security constrained optimal power flow. Electr. Power Syst. Res. 72, 137–145 (2004)
 101.
S. Duman, U. Güvenç, Y. Sönmez, N. Yörükeren, Optimal power flow using gravitational search algorithm. Energy Convers. Manag. 59, 86–95 (2012)
 102.
B.V. Rao, G.V.N. Kumar, Electrical power and energy systems optimal power flow by BAT search algorithm for generation reallocation with unified power flow controller. Int. J. Electr. Power Energy Syst. 68, 81–88 (2015)
 103.
Z. Ye, M. Wang, W. Liu, S. Chen, Fuzzy entropy based optimal thresholding using bat algorithm. Appl. Soft Comput. J. 31, 381–395 (2015)
 104.
S. Biswal, A.K. Barisal, A. Behera, T. Prakash, Optimal power dispatch using BAT algorithm, in 2013 International Conference on Energy Efficient Technologies for Sustainability, pp. 1018–1023, 2013
 105.
J.A. Momoh, J.Z. Zhu, G.D. Boswell, S. Hoffman, Power system security enhancement by OPF with phase shifter. IEEE Trans. Power Syst. 16(2), 287–293 (2001)
 106.
D. Devaraj, B. Yegnanarayana, Geneticalgorithmbased optimal power flow for security enhancement. IEEE Proc. Gener. Transm. Distrib. 152(6), 899 (2005)
 107.
C. Venkaiah, D.M. Vinod Kumar, Fuzzy adaptive bacterial foraging congestion management using sensitivity based optimal active power rescheduling of generators. Appl. Soft Comput. J. 11(8), 4921–4930 (2011)
 108.
G. Baskar, M.R. Mohan, Contingency constrained economic load dispatch using improved particle swarm optimization for security enhancement. Electr. Power Syst. Res. 79(4), 615–621 (2009)
 109.
S. Armaghani, N. Amjady, O. Abedinia, Security constrained multiperiod optimal power flow by a new enhanced artificial bee colony. Appl. Soft Comput. J. 37, 382–395 (2015)
 110.
K. Pandiarajan, C.K. Babulal, Overload alleviation in electric power system using fuzzy logic, 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), no. January, pp. 417–423, 2011
 111.
K. Teeparthi, D.M. Vinod Kumar, Securityconstrained optimal power flow with wind and thermal power generators using fuzzy adaptive artificial physics optimization algorithm. Neural Comput. Appl. 29, 855–871 (2016)
 112.
S. Gerbex, R. Cherkaoui, A. J. Germond, Optimal location of FACTS devices to enhance power system security, in 2003 IEEE Bologna PowerTech  Conference Proceedings, vol. 3, pp. 61–68, 2003
 113.
S.H. Song, J.U. Lim, S. Il Moon, Installation and operation of FACTS devices for enhancing steadystate security. Electr. Power Syst. Res. 70(1), 7–15 (2004)
 114.
J.G. Singh, S.N. Singh, S.C. Srivastava, Enhancement of power system security through optimal placement of TCSC and UPFC, in 2007 IEEE Power Engineering Society General Meeting, PES, 2007
 115.
J.G. Singh, S.N. Singh, S.C. Srivastava, L. Soder, Power system security enhancement by optimal placement of UPFC, in Proceedings of the 4th IASTED Asian Conference on Power and Energy Systems, AsiaPES 2010, pp. 228–235, 2010
 116.
N. Yorino, E.E. ElAraby, H. Sasaki, S. Harada, A new formulation for FACTS allocation for security enhancement against voltage collapse. IEEE Trans. Power Syst. 18(1), 3–10 (2003)
 117.
Y. Lu, A. Abur, Static security enhancement via optimal utilization of thyristorcontrolled series capacitors. IEEE Trans. Power Syst. 17(2), 324–329 (2002)
 118.
A. Abur, Improving system static security via optimal placement of thyristor controlled series capacitors (TCSC), in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), vol. 2, pp. 516–521, 2001
 119.
G.I. Rashed, H.I. Shaheen, X.Z. Duan, S.J. Cheng, Evolutionary optimization techniques for optimal location and parameter setting of TCSC under single line contingency. Appl. Math. Comput. 205(1), 133–147 (2008)
 120.
G.I. Rashed, Y. Sun, Optimal placement of Thyristor controlled series compensation for enhancing power system security based on computational intelligence techniques. Procedia Eng. 15, 908–914 (2011)
 121.
S.M.R. Slochanal, M. Saravanan, A.C. Devi, Application of PSO technique to find optimal settings of TCSC for static security enhancement considering installation cost, in 2005 International Power Engineering Conference, pp. 1–394, 2005
 122.
K. Shanmukha Sundar, H.M. Ravikumar, Selection of TCSC location for secured optimal power flow under normal and network contingencies. Int. J. Electr. Power Energy Syst. 34(1), 29–37 (2012)
 123.
S.K. Rautray, S. Choudhury, S. Mishra, P. K. Rout, A particle swarm optimization based approach for power system transient stability enhancement with TCSC, in Procedia Technology; 2nd International Conference on Communication, Computing & Security ICCCS2012], vol. 6, pp. 31–38, 2012
 124.
M. Güçyetmez, E. Çam, A new hybrid algorithm with geneticteaching learning optimization (GTLBO) technique for optimizing of power flow in windthermal power systems. Electr. Eng. 98, 145–157 (2015)
 125.
S. Heier, Grid Integration of Wind Energy Conversion Systems (Wiley, London, 2014)
 126.
S. Li, D.C. Wunsch, E.A. O’Hair, M.G. Giesselmann, Using neural networks to estimate wind turbine power generation. IEEE Trans. Energy Convers. 16(3), 276–282 (2001)
 127.
I.G. Damousis, M.C. Alexiadis, J.B. Theocharis, P.S. Dokopoulos, A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans. Energy Convers. 19(2), 352–361 (2004)
 128.
B.G. Brown, R.W. Katz, A.H. Murphy, Time series models to simulate and forecast wind speed and wind power. J. Clim. Appl. Meteorol. 23(8), 1184–1195 (1984)
 129.
J. Hetzer, D.C. Yu, K. Bhattarai, An economic dispatch model incorporating wind power. IEEE Trans. Energy Convers. 23(2), 603–611 (2008)
 130.
X. Liu, Economic load dispatch constrained by wind power availability: a waitandsee approach. IEEE Trans. Smart Grid 1(3), 347–355 (2010)
 131.
H. Chen, J. Chen, X. Duan, Multistage dynamic optimal power flow in wind power integrated system, in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, vol. 2005, pp. 1–5, 2005
 132.
G.C.G. Chen, J.C.J. Chen, X.D.X. Duan, Power flow and dynamic optimal power flow including wind farms, in 2009 International Conference on Sustainable Power Generation and Supply, pp. 1–6, 2009
 133.
B.C. Pal, R.A. Jabr, Intermittent wind generation in optimal power flow dispatching. IET Gener. Transm. Distrib. 3(1), 66–74 (2009)
 134.
L. Shi, C. Wang, L. Yao, Y. Ni, M. Bazargan, Optimal power flow solution incorporating wind power. IEEE Syst. J. 6(2), 233–241 (2012)
 135.
A. Panda, M. Tripathy, Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm. Int. J. Electr. Power Energy Syst. 54, 306–314 (2014)
 136.
S.P. Singh, J. Rokadia, C. Mishra, Optimal power flow in the presence of wind power using modified cuckoo search. IET Gener. Transm. Distrib. 9(7), 615–626 (2015)
 137.
R. ZárateMiñano, F. Milano, A.J. Conejo, An OPF methodology to ensure smallsignal stability. IEEE Trans. Power Syst. 26, 1050–1061 (2011)
 138.
Peijie Li, Hua Wei, Bin Li, Yude Yang, Eigenvalueoptimisationbased optimal power flow with smallsignal stability constraints. IET Gener. Transm. Distrib. 7, 440–450 (2013)
 139.
K. Tangpatiphan, A. Yokoyama, Adaptive evolutionary programming with neural network for transient stability constrained optimal power flow, in 15th International Conference on Intelligent System Applications to Power Systems, pp. 1–6, 2009
 140.
H. Ahmadi, H. Ghasemi, M. HaddadiA, H. Lesani, Two approaches to transient stabilityconstrained optimal power flow. Int. J. Electr. Power Energy Syst. 47, 181–192 (2013)
 141.
R. ZarateMinano, T. Van Cutsem, F. Milano, J. ConejoA, Securing transient stability using timedomain simulations within an optimal power flow. IEEE Trans. Power Syst. 25, 243–253 (2010)
 142.
D. Gan, R.J. Thomas, R.D. Zimmerman, Stabilityconstrained optimal power flow. IEEE Trans. Power Syst. 15(2), 535–540 (2000)
 143.
Y. Yuan, J. Kubokawa, H. Sasaki, A solution of optimal power flow with multicontingency transient stability constraints. IEEE Trans. Power Syst. 18(3), 1094–1102 (2003)
 144.
K.Y. Chan, S.H. Ling, K.W. Chan, H.H.C. Iu, G. T.Y. Pong, Solving multicontingency transient stability constrained optimal power flow problems with an improved GA, in 2007 IEEE Congress on Evolutionary Computation, pp. 2901–2908, 2007
 145.
A.G. Bakirtzis, P.N. Biskas, C.E. Zoumas, V. Petridis, Optimal power flow by enhanced genetic algorithm. IEEE Trans. Power Syst. 17(2), 229–236 (2002)
 146.
N. Mo, Z.Y. Zou, K.W. Chan, T.Y.G. Pong, Transient stability constrained optimal power flow using particle swarm optimisation. IET Gener. Transm. Distrib. 1(3), 476 (2007)
 147.
M. Anitha, S. Subramanian, R. Gnanadass, Optimal power flow constrained by transient stability based on improved particle swarm optimisation. Int. J. Intell. Syst. Technol. Appl. 5(1/2), 68 (2008)
 148.
H.R. Cai, C.Y. Chung, K.P. Wong, Application of differential evolution algorithm for transient stability constrained optimal power flow. IEEE Trans. Power Syst. 23(2), 719–728 (2008)
 149.
D. Wu, D. Gan, J.N. Jiang, An improved microparticle swarm optimization algorithm and its application in transient stability constrained optimal power flow. Int. Trans. Electr. Energy Syst. 24(3), 395–411 (2014)
 150.
S.W. Xia, B. Zhou, K.W. Chan, Z.Z. Guo, An improved GSO method for discontinuous nonconvex transient stability constrained optimal power flow with complex system model. Int. J. Electr. Power Energy Syst. 64, 483–492 (2015)
 151.
K. Ayan, U. Kılıç, B. Baraklı, Chaotic artificial bee colony algorithm based solution of security and transient stability constrained optimal power flow. Int. J. Electr. Power Energy Syst. 64, 136–147 (2015)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Teeparthi, K., Vinod Kumar, D.M. Power System Security Assessment and Enhancement: A Bibliographical Survey. J. Inst. Eng. India Ser. B 101, 163–176 (2020). https://doi.org/10.1007/s40031020004401
Received:
Accepted:
Published:
Issue Date:
Keywords
 Power system security
 Contingency analysis
 Security enhancement
 Static security assessment
 Dynamic security assessment