Skip to main content

Advertisement

Log in

Roof-top Wind Energy Conversion System

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Demand for clean energy is increasing day by day owing to depleting conventional energy resources and increasing global warming. This paper proposes a novel roof-top wind energy conversion system (RTWS) to extract extra amount of energy from regions rich in wind power. Unlike in conventional Wind Energy Conversion System (WECS), a Vertical Axis Wind Turbine (VAWT) driven generator is proposed to be used for energy conversion. Absence of blade-pitch control and yaw control in VAWT have been countered by a variable-flux generator. Variable flux in the generator has been achieved by mechanical means. Based upon proposed system a proof-of-concept experimental setup has been fabricated and tested for Variable Wind Constant Load (VWCL) and Constant Wind Variable Load (CWVL). Results support the hypothesis of using proposed system as RTWS under varying wind and load. The proposed system can bring revolutionary changes in the composition of energy sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Singh, M. Singh, S. Chanana, D. Raveendhra, Operation and control of a hybrid wind-diesel-battery energy system connected to micro-grid, in 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE), Jabalpur, 2013, pp. 1–6

  2. S. Sawyer, S. Teske, L. Fried, S. Shukla, Global wind energy outlook (GWEC, Washington, DC, US, 2016). http://gwec.net/publications/global-wind-energy-outlook/global-wind-energy-outlook-2016/

  3. S.O. Ani, H. Polinder, J.A. Ferreira, Low cost axial flux PM generator for small wind turbines, in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, 2012, pp. 2350–2357

  4. H. Eric, Wind Turbines Fundamentals, Technologies, Application, Economics, 2nd edn. (Springer, New York, 2006)

    Google Scholar 

  5. B.K. Kirke, Evaluation of self starting vertical axis wind turbine for stand alone application. PhD thesis, School of Engineering Griffith University Gold Coast Campus, April (1998)

  6. M.C. Claessens, The Design and Testing of Airfoils for Application in Small Vertical Axis Wind Turbines. Master of Science Thesis. s.l.: Delft University of Technology (2006)

  7. V.G. Dereng, Fixed geometry self starting transverse axis wind turbine, US 4264279 A (1981)

  8. S.K. Gupta, R.K. Srivastava, S.N. Mahendra, Voltage regulation of dual stator permanent magnet synchronous generator, in 2015 IEEE International Transportation Electrification Conference (ITEC), Chennai, 2015, pp. 1–6 (2015)

  9. F.G. Capponi, R. Terrigi, F. Caricchi et al., Active output voltage regulation for an ironless axial-flux PM automotive alternator with electromechanical flux weakening. IEEE Trans. Ind. Appl. 45(5), 1785–1793 (2009)

    Article  Google Scholar 

  10. R. Owen, Z.Q. Zhu, J.B. Wang et al., Review of variable-flux permanent magnet machines, in 2011 International Conference on Electrical Machines and Systems, Beijing, 2011, pp. 1–6

  11. X. Yuan, F. Wang, D. Boroyevich et al., DC-link voltage control of a full power converter for wind generator operating in weak-grid systems. IEEE Trans. Power Electron. 24(9), 2178–2192 (2009)

    Article  Google Scholar 

  12. Z. Chen, E. Spooner, Current source thyristor inverter and its active compensation system. Proc. IEE Gen. Transm. Distrib. 150, 447–454 (2003)

    Article  Google Scholar 

  13. M. Chinchilla, A. Arnaltes, J.C. Burgos, Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid’. IEEE Trans. Energy Convers. 21(1), 130–135 (2006)

    Article  Google Scholar 

  14. J.A. Baroudi, V. Dinavahi, A.M. Knight, A review of power converter topologies for wind generators. Renew. Energy 32, 2369–2385 (2007)

    Article  Google Scholar 

  15. K. Abbaszadeh, F. Rezaee Alam, M. Teshnehlab, Slot opening optimization of surface mounted permanent magnet motor for cogging torque reduction. Energy Convers. Manag. 55, 108–115 (2012)

    Article  Google Scholar 

  16. H. Jiao, M. Cheng, W. Hua, W. Zhao, W. Li, Torque ripple suppression in flux switching PM motor by harmonic current injection based on voltage space vector modulation. IEEE Trans. Magn. 46(6), 1527–1530 (2010)

    Article  Google Scholar 

  17. T. Li, G. Slemon, Reduction of cogging torque in permanent magnet motors. IEEE Trans. Magn. 24, 2901–2903 (1988)

    Article  Google Scholar 

  18. T. Ishikawa, G.R. Slemon, A method of reducing ripple torque in permanent magnet motors without skewing. IEEE Trans. Magn. 29, 2028–2031 (1993)

    Article  Google Scholar 

  19. E.R. Braga Filho, A.M.N. Lima, Reducing cogging torque in Interior permanent magnet machines without skewing. IEEE Trans. Magn. 34(5), 3652–3655 (1998)

    Article  Google Scholar 

  20. C. Hwang, S.B. John, S.S. Wu, Reduction of cogging torque in spindle motors for CD-ROM drive. IEEE Trans. Magn. 34, 468–470 (1998)

    Article  Google Scholar 

  21. T.M. Jahns, W.L. Soong, Pulsating torque minimization techniques for permanent magnet AC motors drives—are view. IEEE Trans Ind. Electron. 43(2), 321–330 (1996)

    Article  Google Scholar 

  22. N. Bianchi, S. Bolognani, Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Trans. Ind. Appl. 39(5), 1259–1365 (2002)

    Article  Google Scholar 

  23. S.M. Hwang, J.B. Eom, Y.H. Jung, D.W. Lee, B.S. Kang, Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors. IEEE Trans. Magn. 37(4), 2806–2809 (2001)

    Article  Google Scholar 

  24. R. Islam, I. Husain, A. Fardoun, K. McLaughlin, Permanent magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Trans. Ind. Appl. 45(1), 152–160 (2009)

    Article  Google Scholar 

  25. R. Lateb, N. Takorabet, F. Meibody-Tabar, Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors. IEEE Trans. Magn. 42(3), 442–445 (2006)

    Article  Google Scholar 

  26. Z.Q. Zhu, J.T. Chen, L.J. Wu, D. Howe, Influence of stator asymmetry on cogging torque of permanent magnet brushless machines. IEEE Trans. Magn. 44(11), 3851–3854 (2008)

    Article  Google Scholar 

  27. Y. Chen, P. Pillay, A. Khan, PM wind generator topologies. IEEE Trans. Ind. Appl. 41(6), 1619–1626 (2005)

    Article  Google Scholar 

  28. S. Kartik, R. Krishnan, Performance comparison of radial and axial field, permanent-magnet brushless machines. IEEE Trans. Ind. Appl. 37(5), 1219–1226 (2001)

    Article  Google Scholar 

  29. A. Parviainen, Design of axial-flux permanent magnet low-speed machines and performance comparison between radial-flux and axial-flux machines. PhD thesis, Lappeenranta University of Technology, Lappeenranta, Finland (2005)

  30. S.K. Gupta, A. Dwivedi, R.K. Srivastava, Fabrication of dual-stator Permanent magnet synchronous generator. Annual IEEE India Conference (INDICON), New Delhi, Dec 2015, pp. 1–5

  31. S.K. Gupta, R.K. Srivastava, Experimental evaluation of VF controlled off-grid generating system, in Power Electronics Drives and Energy Systems (PEDES) 2016 IEEE International Conference on, pp. 1–5

  32. W. Li, D. Xu, W. Zhang, H. Ma, Research on wind turbine emulation based on DC motor, in 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, 2007, pp. 2589–2593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Srivastava, R.K. Roof-top Wind Energy Conversion System. J. Inst. Eng. India Ser. B 99, 597–604 (2018). https://doi.org/10.1007/s40031-018-0346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-018-0346-4

Keywords

Navigation