Abstract
Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.
Similar content being viewed by others
References
K. Cheng-Tung, H. King-Chug, W. Tsung-Ching, W. Huan-Sheng, Wavelet-based ECG data compression system with linear quality control scheme. IEEE Trans. Biomed. Eng. 57(6), 1399–1409 (2010)
M. Blanco-Velasco, F. Cruz-Roldan, J.I. Godino-Llorente, K.E. Barner, Wavelet packets feasibility study for the design of an ECG compressor. IEEE Trans. Biomed. Eng. 54(4), 766–769 (2007)
M. Abo-Zahhad, ECG signal compression using discrete wavelet transform, Discrete Wavelet Transforms—Theory and Applications, eds. by D. Juuso, T. Olkkonen (InTech, Europe, 2011), pp. 143–168
M. Faezipour, A. Saeed, S.C. Bulusu, M. Nourani, H. Minn, L. Tamil, A patient-adaptive profiling scheme for ECG beat classification. IEEE Trans. Inf. Technol. Biomed. 14(5), 1153–1165 (2010)
M. Nirubama, ECG noise cancellation using RLS adaptive filter. Middle East J. Sci. Res. 18(12), 1807–1811 (2013)
F. Sufi, I. Khalil, Diagnosis of cardiovascular abnormalities from compressed ECG: a data mining-based approach. IEEE Trans. Inf. Technol. Biomed. 15(1), 33–39 (2011)
W. Jiang, S.G. Kong, Block-based neural networks for personalized ECG signal classification. IEEE Trans. Neural Netw. 18(6), 1750–1761 (2007)
M.K. Islam, A.N.M.M. Haque, G. Tangim, T. Ahammad, M.R.H. Khondokar, Study and analysis of ECG signal using MATLAB and LABVIEW as effective tools. Int. J. Comput. Electr. Eng. 4(3), 404–408 (2012)
S.Z. Mahmoodabadi, A. Ahmadian, M.D. Abolhasani, ECG Feature Extraction Using Daubechies Wavelets, Proceedings of the Fifth International Conference Visualization, Imaging and Image Processing (Benidorm, 2005)
I. Odinaka, L. Po-Hsiang, A.D. Kaplan, J.A. O’Sullivan, E.J. Sirevaag, J.W. Rohrbaugh, ECG biometric recognition: a comparative analysis. IEEE Trans. Inf. Forensics Secur. 7(6), 1812–1823 (2012)
X. Liu, Y. Zheng, M.W. Phyu, B. Zhao, M. Je, X. Yuan, Multiple functional ECG signal is processing for wearable applications of long-term cardiac monitoring. IEEE Trans. Biomed. Eng. 58(2), 380–389 (2011)
S.A. Jones, ECG Notes: Interpretation and Management Guide (F.A. Davis Company, Philadelphia, 2005)
L. Sun, Y. Lu, K. Yang, S. Li, ECG analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12), 3348–3356 (2012)
J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)
V.X. Afonso, W.J. Tompkins, T.Q. Nguyen, S. Luo, ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–202 (1999)
K. Bert-Uwe, C. Hennig, R. Orglmeister, The principles of software QRS detection. IEEE Eng. Med. Biol. 21(1), 42–57 (2002)
M. Moga, V.D. Moga, Gh.I. Mihalas, Continuous wavelet transform in ECG analysis: a concept or clinical uses, Connecting Medical Informatics and Bio-Informatics, eds. by R. Engelbrecht et al. (ENMI, 2005), pp. 1143–1148
T. Ince, S. Kiranyaz, M. Gabbouj, A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans. Biomed. Eng. 56(5), 1415–1426 (2009)
H.S. Zine-Eddine, A. Naït-Ali, QRS complex detection using empirical mode decomposition, Elsevier. Digit. Signal Process. 20(10), 1221–1228 (2010)
S. Ganesan, D. Sivakumar, T.A.D.A. Victoire, Efficient and low complexity analysis of bio-signals using continuous HAAR wavelet transforms for removing noise. Int. J. Eng. Sci. 2(11), 6317–6334 (2010)
D. Benitez, P.A. Gaydecki, A. Zaidi, A.P. Fitzpatrick, The use of the Hilbert transform in ECG signal analysis, Elsevier. Comput. Biol. Med. 31(5), 399–406 (2001)
M. Sharma, H. Dalal, Noise removal from ECG signal and performance analysis using different filter. Int. J. Innov. Res. Electron. Commun. (IJIREC) 1, 32–39 (2014)
K. Vanisree, J. Singaraju, Automatic detection of ECG R-R interval using discrete wavelet transformation. Int. J. Comput. Sci. Eng. 3(4), 1599–1605 (2011)
S. Deshpande, S.O. Rajankar, ECG data compression using principal component analysis. Int. J. Electr. Electron. Comput. Syst. (IJEECS) 1, 13–16 (2013)
V. Gupta, R. Singh, G. Singh, R. Singh, An introduction to principal component analysis and its importance in biomedical signal processing, in International Conference on Life Science and Technology, vol. 3, (2011) pp. 29–33
M.T.U. Zaman, D. Hossain, M.T. Arefin, M.A. Rahman, S.N. Islam, A.K.M.F. Haque, Comparative analysis of denoising on ECG signal. Int. J. Emerg. Technol. Adv. Eng. 2, 479–486 (2012)
A.E. Villanueva-Luna, A. Jaramillo-Nunez, D. Sanchez-Lucero, C.M. Ortiz-Lima, J.G. Aguilar-Soto, A. Flores-Gil, M. May-Alarcon, De-noising audio signals using MATLAB wavelets toolbox. Engineering education and research using MATLAB (InTech, Europe, 2011)
I. Kaur, Rajni, G. Sikri, Denoising of ECG Signal with different wavelets. Int. J. Eng. Trends Technol. 9(13), 658–661 (2014)
J.P.V. Madeiro, P.C. Cortez, F.I. Oliveira, R.S. Siqueira, A new approach to QRS segmentation based on wavelet bases and adaptive threshold technique, Elsevier. Med. Eng. Phys. 29(1), 26–37 (2007)
Y. Sung-Nien, C. Ying-Hsiang, Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network, Elsevier. Pattern Recognit. Lett. 28(10), 1142–1150 (2007)
Rajni, I. Kaur, Electrocardiogram signal analysis-an overview. Int. J. Comput. Appl. 84(7), 22–25 (2013)
M.P.S. Chawla, Detection of indeterminacies in corrected ECG signals using parameterized multidimensional independent component analysis, Taylor and Francis. Comput. Math. Methods Med. 10(2), 85–115 (2009)
I. Kaur, Rajni, Denoising of ECG signal using filters and wavelet transform, International Conference on Recent Trends in Electronics, Data Communication and Computing (ICRTEDC-2014), Gurukul Vidyapeeth, IJEEE-APM 2014, Punjab (2014), pp. 28–31
M. Llamedo, J.P. Martinez, Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58(3), 616–625 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kaur, I., Rajni, R. & Marwaha, A. ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform. J. Inst. Eng. India Ser. B 97, 499–507 (2016). https://doi.org/10.1007/s40031-016-0247-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40031-016-0247-3