Skip to main content
Log in

Fire Hazard In Urban Areas: A Scoping Review To Understand Issues And Opportunities

  • REVIEW PAPER
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

Cities have been central to the socioeconomic development of regions and nations. The growth of nations has largely been dependent on the development of their cities. With the continuous trends of high population growth and rapid urbanization, the major concentration of people and economic activities has been occurring in urban areas. Urban areas have thus become significantly central for achieving sustainable development. On the other hand, the impacts of disasters have proved detrimental to the pace of urban development and obstruct the path towards sustainability. Unlike natural disasters, the scale at which man-made disasters occur is relatively smaller, but their high frequency has amplified the issue in urban areas. Fire disasters have emerged as a significant threat to urban areas due to their increasing occurrences. The socio-economic costs of fires in urban areas have been significantly high throughout history, yet the subject has received relatively less attention. This review aims to understand the literature on urban fires and identify the recent trends in the subject. This review intends to scope the unattended issue of fires in urban areas from a wider urban perspective rather than looking at it as an isolated, accidental event within the cities. This scoping review thus attempts to identify the gaps in the subject area while proposing possible future research areas and provides a baseline to integrate fires in urban areas in disaster-resilient studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wamsler, Cities, disaster risk and adaptation, 1st edn. (Routledge, London, 2013)

    Google Scholar 

  2. D.R. Godschalk, Urban hazard mitigation: creating resilient cities. Nat. Hazard. Rev. 4(3), 136–143 (2003). https://doi.org/10.1061/(ASCE)1527-6988(2003)4:3(136)

    Article  Google Scholar 

  3. H. Xu, Y. Li, Y. Tan, N. Deng, A scientometric review of urban disaster resilience research. Int. J. Environ. Res. Public Health 18(7), 7 (2021). https://doi.org/10.3390/ijerph18073677

    Article  Google Scholar 

  4. WHO, Violence and Injury Prevention, World Health Organisation, (2018). [Online]. Available: https://www.who.int/violence_injury_prevention/burns/en/

  5. World Bank, Urban Fire Regulatory Assessment and Mitigation Evaluation Diagnostic, World Bank, Washington DC, (Oct. 2020). [Online]. Available: https://openknowledge.worldbank.org

  6. J. Hu, X. Shu, S. Xie, S. Tang, J. Wu, B. Deng, Socioeconomic determinants of urban fire risk: A city-wide analysis of 283 Chinese cities from 2013 to 2016. Fire Saf. J. 110, 102890 (2019). https://doi.org/10.1016/j.firesaf.2019.102890

    Article  Google Scholar 

  7. Geneva Association, World Fire Statistics 27, The Geneva Association, Geneva, (Oct. 2011). [Online]. Available: https://pozhproekt.ru/stat/geneva/2011.pdf

  8. S.L. Manzello et al., Summary of workshop large outdoor fires and the built environment. Fire Saf. J. 100, 76–92 (2018). https://doi.org/10.1016/j.firesaf.2018.07.002

    Article  Google Scholar 

  9. K. Wang, Y. Yuan, M. Chen, D. Wang, A POIs based method for determining spatial distribution of urban fire risk. Process. Saf. Environ. Prot. 154, 447–457 (2021). https://doi.org/10.1016/j.psep.2021.08.039

    Article  Google Scholar 

  10. UNDRR, Sendai Framework for Disaster Risk Reduction: 2015–2030, United Nations Office for Disaster Risk Reduction, Sendai, Japan, (2015)

  11. H. Arksey, L. O’Malley, Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8(1), 19–32 (2005). https://doi.org/10.1080/1364557032000119616

    Article  Google Scholar 

  12. W. Aiyou, S. Shiliang, L. Runqiu, T. Deming, T. Xiafang, City fire risk analysis based on coupling fault tree method and triangle fuzzy theory. Procedia Eng. 84, 204–212 (2014). https://doi.org/10.1016/j.proeng.2014.10.427

    Article  Google Scholar 

  13. Y. Zhang, Analysis on comprehensive risk assessment for urban fire: the case of Haikou city. Procedia Eng. 52, 618–623 (2013). https://doi.org/10.1016/j.proeng.2013.02.195

    Article  Google Scholar 

  14. M.E. Kaplan, J.M. Watts, A prototypical historic fire-risk index to evaluate fire safety in historic buildings. APT Bull.: J. Preserv. Technol. 30(2/3), 49–54 (1999). https://doi.org/10.2307/1504640

    Article  Google Scholar 

  15. J.M. Watts, Analysis of the NFPA fire safety evaluation system for business occupancies. Fire Technol. 33(3), 276–282 (1997). https://doi.org/10.1023/A:1015323923693

    Article  Google Scholar 

  16. J. M. Watts Jr., Fire risk assessment in cultural resource facilities, in Fire Risk and Hazard Assessment Symposium Proceedings, (Quincy, MA: National Fire Protection Research Foundation, 1996), pp. 508–522

  17. J.M. Watts Jr., Fire protection performance evaluation for historic buildings. J. Fire. Prot. Eng. 11(4), 197–208 (2001). https://doi.org/10.1177/104239101400934388

    Article  MathSciNet  Google Scholar 

  18. J. M. Watts Jr., M. E. Kaplan, Performance-based approaches to protecting our heritage, in Proceedings of the International Conference on Performance-Based Codes and Fire Safety Design Methods, (Ottawa, Canada: Boston: Society of Fire Protection Engineers, 1997)

  19. J.M. Watts Jr., M.E. Kaplan, Fire risk index for historic buildings. Fire Technol. 37(2), 167–180 (2001). https://doi.org/10.1023/A:1011649802894

    Article  Google Scholar 

  20. L. Wu, A. Ren, Urban fire risk clustering method based on fire statistics. Tsinghua Sci. Technol. 13, 418–422 (2008). https://doi.org/10.1016/S1007-0214(08)70184-6

    Article  Google Scholar 

  21. S.B. Agbola, O.J. Falola, Seasonal and locational variations in fire disasters in Ibadan, Nigeria. Int. J. Disaster Risk Reduct. 54, 102035 (2021). https://doi.org/10.1016/j.ijdrr.2021.102035

    Article  Google Scholar 

  22. L. Telesca, W. Song, Time-scaling properties of city fires. Chaos Solitons Fractals 44(7), 558–568 (2011). https://doi.org/10.1016/j.chaos.2011.05.001

    Article  Google Scholar 

  23. J. Wang, W. Song, H. Zheng, L. Telesca, Temporal scaling behavior of human-caused fires and their connection to relative humidity of the atmosphere. Ecol. Model. 221(1), 85–89 (2010). https://doi.org/10.1016/j.ecolmodel.2009.03.007

    Article  Google Scholar 

  24. J.H. Wang, J.H. Sun, S.M. Lo, L.J. Gao, R.K.K. Yuen, Statistical analysis on the temporal-spatial characteristics of urban fires under typical urbanization features. Procedia Eng. 11, 437–444 (2011). https://doi.org/10.1016/j.proeng.2011.04.680

    Article  Google Scholar 

  25. J. Wang, S. Li, Time-clustering behaviors of urban fires. Procedia Eng. 71, 214–219 (2014). https://doi.org/10.1016/j.proeng.2014.04.031

    Article  Google Scholar 

  26. Y.A. Mahmood, A. Ahmadi, A.K. Verma, A. Srividya, U. Kumar, Fuzzy fault tree analysis: a review of concept and application. Int. J. Syst. Assur. Eng. Manag. 4(1), 19–32 (2013). https://doi.org/10.1007/s13198-013-0145-x

    Article  Google Scholar 

  27. A. A. Fernandez, D. Jacobs, C. Keating, P. Kauffman, AHP and the assessment of community fire risk in the city of Hampton, Virginia, in PICMET ’99: Portland International Conference on Management of Engineering and Technology. Proceedings Vol-1: Book of Summaries (IEEE Cat. No.99CH36310), vol. 2, 1999, pp. 347–353. https://doi.org/10.1109/PICMET.1999.787826

  28. D. Rohde, J. Corcoran, P. Chhetri, Spatial forecasting of residential urban fires: a Bayesian approach. Comput. Environ. Urban Syst. 34(1), 58–69 (2010). https://doi.org/10.1016/j.compenvurbsys.2009.09.001

    Article  Google Scholar 

  29. T. Rahman Tishi, I. Islam, Urban fire occurrences in the Dhaka Metropolitan Area. GeoJournal 84(6), 1417–1427 (2019). https://doi.org/10.1007/s10708-018-9923-y

    Article  Google Scholar 

  30. F. Wang, Y. Hu, S. Wang, X. Li, Local indicator of colocation quotient with a statistical significance test: examining spatial association of crime and facilities. Prof. Geogr. 69(1), 22–31 (2017). https://doi.org/10.1080/00330124.2016.1157498

    Article  Google Scholar 

  31. Z. Xia, H. Li, Y. Chen, W. Yu, Detecting urban fire high-risk regions using colocation pattern measures. Sustain. Cities Soc. 49, 101607 (2019). https://doi.org/10.1016/j.scs.2019.101607

    Article  Google Scholar 

  32. H. Yue, X. Zhu, X. Ye, W. Guo, The local colocation patterns of crime and land-use features in Wuhan, China. ISPRS Int. J. Geo-Inf. 6(10), 10 (2017). https://doi.org/10.3390/ijgi6100307

    Article  Google Scholar 

  33. M.A. Chisty, Md.M. Rahman, Coping capacity assessment of urban fire disaster: an exploratory study on ward no: 30 of Old Dhaka area. Int. J. Disaster Risk Reduct. 51, 101878 (2020). https://doi.org/10.1016/j.ijdrr.2020.101878

    Article  Google Scholar 

  34. D. Rahmawati, A. Pamungkas, B.U. Aulia, K.D. Larasati, G.A. Rahadyan, A.H. Dito, Participatory mapping for urban fire risk reduction in high-density urban settlement. Procedia Soc. Behav. Sci. 227, 395–401 (2016). https://doi.org/10.1016/j.sbspro.2016.06.091

    Article  Google Scholar 

  35. G. Jin, Q. Wang, C. Zhu, Y. Feng, J. Huang, X. Hu, Urban fire situation forecasting: deep sequence learning with spatio-temporal dynamics. Appl. Soft Comput. 97, 106730 (2020). https://doi.org/10.1016/j.asoc.2020.106730

    Article  Google Scholar 

  36. D. Vasiliauskas, G. Beconytė, Spatial analysis of fires in Vilnius city in 2010–2012. Geodesy Cartogr. 41(1), 25–30 (2015). https://doi.org/10.3846/20296991.2015.1011862

    Article  Google Scholar 

  37. E. Ceyhan, K. Ertuğay, Ş Düzgün, Exploratory and inferential methods for spatio-temporal analysis of residential fire clustering in urban areas. Fire Saf. J. 58, 226–239 (2013). https://doi.org/10.1016/j.firesaf.2013.01.024

    Article  Google Scholar 

  38. M.R. Hossain, O. Smirnov, Analyzing the risk factors of residential fires in urban and rural census tracts of Ohio using panel data analysis. Appl. Geogr. 151, 102863 (2023). https://doi.org/10.1016/j.apgeog.2022.102863

    Article  Google Scholar 

  39. K. Yamashita, Understanding urban fire: Modeling fire incidence using classical and geographically weighted regression, Western Washington University, (2008). Accessed: Jan. 20, 2023. [Online]. Available: https://www.proquest.com/openview/de9ef0134be570da0896c3cb0568cc51/1?pq-origsite=gscholar&cbl=18750

  40. K. Guo, W. Wang, S. Tian, J. Yang, Z. Jiang, Z. Dai, Research on optimization technology of cross-regional synergistic deployment of fire stations based on fire risk. Sustainability 14(23), 23 (2022). https://doi.org/10.3390/su142315725

    Article  Google Scholar 

  41. P. Baquedano Juliá, T.M. Ferreira, H. Rodrigues, Post-earthquake fire risk assessment of historic urban areas: a scenario-based analysis applied to the historic city centre of Leiria, Portugal. Int. J. Disaster Risk Reduct. 60, 102287 (2021). https://doi.org/10.1016/j.ijdrr.2021.102287

    Article  Google Scholar 

  42. S. Granda, T.M. Ferreira, Assessing vulnerability and fire risk in old urban areas: application to the historical centre of Guimarães. Fire Technol. 55(1), 105–127 (2019). https://doi.org/10.1007/s10694-018-0778-z

    Article  Google Scholar 

  43. P.P. Singh, C.S. Sabnani, V.S. Kapse, Hotspot analysis of structure fires in urban agglomeration: a case of Nagpur City, India. Fire 4(3), 3 (2021). https://doi.org/10.3390/fire4030038

    Article  Google Scholar 

  44. F. Yan, Q. Zhang, Fire risk assessment of CBD in Binhai New Area of Tianjin. Trans. Tianjin Univ. 21(6), 501–506 (2015). https://doi.org/10.1007/s12209-015-2629-z

    Article  Google Scholar 

  45. X. Zhang, J. Yao, K. Sila-Nowicka, Exploring spatiotemporal dynamics of urban fires: a case of Nanjing, China. ISPRS Int. J. Geo-Inf. 7(1), 1 (2018). https://doi.org/10.3390/ijgi7010007

    Article  Google Scholar 

  46. L.E. Frost, E.L. Jones, The fire gap and the greater durability of nineteenth century cities. Plan. Perspect. 4(3), 333–347 (1989). https://doi.org/10.1080/02665438908725687

    Article  Google Scholar 

  47. K. Habibi, S. Lotfi, M.J. Koohsari, Spatial analysis of urban fire station locations by integrating AHP model and IO logic using GIS (a case study of Zone 6 of Tehran). J. Appl. Sci. 8, 3302–3315 (2008). https://doi.org/10.3923/jas.2008.3302.3315

    Article  Google Scholar 

  48. E. Aktaş, Ö. Özaydın, B. Bozkaya, F. Ülengin, Ş Önsel, Optimizing fire station locations for the Istanbul Metropolitan Municipality. Interfaces 43(3), 240–255 (2013). https://doi.org/10.1287/inte.1120.0671

    Article  Google Scholar 

  49. W. Lai, L. Han-lun, L. Qi, C. Jing-yi, C. Yi-jiao, Study and implementation of fire sites planning based on GIS and AHP. Procedia Engineering 11, 486–495 (2011). https://doi.org/10.1016/j.proeng.2011.04.687

    Article  Google Scholar 

  50. H.-S. Chang, C.-M. Lai, H.-L. Hwang, Spatial performance to locate city fire stations. Proc. Inst. Civil Eng.—Municipal Eng. 165(1), 19–29 (2012). https://doi.org/10.1680/muen.2012.165.1.19

    Article  Google Scholar 

  51. P.H. Nyimbili, T. Erden, GIS-based fuzzy multi-criteria approach for optimal site selection of fire stations in Istanbul, Turkey. Socioecon. Plann. Sci. 71, 100860 (2020). https://doi.org/10.1016/j.seps.2020.100860

    Article  Google Scholar 

  52. J. Yao, X. Zhang, A.T. Murray, Location optimization of urban fire stations: access and service coverage. Comput. Environ. Urban Syst. 73, 184–190 (2019). https://doi.org/10.1016/j.compenvurbsys.2018.10.006

    Article  Google Scholar 

  53. J.A. Tali, M.M. Malik, S. Divyashree, A. Nusrath, B. Mahalingam, Location–allocation model applied to urban public services: spatial analysis of fire stations in Mysore urban area Karnataka India. Int. J. Adv. Res. Dev. 2(5), 5 (2017)

    Google Scholar 

  54. K. Himoto, T. Tanaka, A model for the fire-fighting activity of local residents in urban fires. Fire Saf. J. 54, 154–166 (2012). https://doi.org/10.1016/j.firesaf.2012.04.006

    Article  Google Scholar 

  55. K. Himoto, T. Tanaka, Development and validation of a physics-based urban fire spread model. Fire Saf. J. 43(7), 477–494 (2008). https://doi.org/10.1016/j.firesaf.2007.12.008

    Article  Google Scholar 

  56. S. Li, R.A. Davidson, Parametric study of urban fire spread using an urban fire simulation model with fire department suppression. Fire Saf. J. 61, 217–225 (2013). https://doi.org/10.1016/j.firesaf.2013.09.017

    Article  Google Scholar 

  57. A. Bagchi, A. Sprintson, C. Singh, Modeling the impact of fire spread on an electrical distribution network. Electric Power Syst. Res. 100, 15–24 (2013). https://doi.org/10.1016/j.epsr.2013.01.009

    Article  Google Scholar 

  58. L. Cheng, S. Li, L. Ma, M. Li, X. Ma, Fire spread simulation using GIS: aiming at urban natural gas pipeline. Saf. Sci. 75, 23–35 (2015). https://doi.org/10.1016/j.ssci.2015.01.002

    Article  Google Scholar 

  59. A. Sekizawa, M. Ebihara, H. Notake, Development of seismic-induced fire risk assessment method for a building. Fire Safety Science 7, 309–320 (2003)

    Article  Google Scholar 

  60. Y. Shaham, I. Benenson, Modeling fire spread in cities with non-flammable construction. Int. J. Disaster Risk Reduct. 31, 1337–1353 (2018). https://doi.org/10.1016/j.ijdrr.2018.03.010

    Article  Google Scholar 

  61. M.M. Rafi, T. Aziz, S.H. Lodi, A suggested model for mass fire spread. Sustain. Resil. Infrastruct. 5(4), 214–231 (2020). https://doi.org/10.1080/23789689.2018.1519308

    Article  Google Scholar 

  62. A. Cantizano, R. Caro, M. Fernández, P. Ayala, Human factors in the model of urban fire spread in Madrid (Spain) focused on the poor population. Sustainability 14(8), 8 (2022). https://doi.org/10.3390/su14084486

    Article  Google Scholar 

  63. S. Goswami, A. Kumar, S. Pipralia, Transformations of the traditional residential neighborhoods of the walled city of Jaipur. ISVS e-journal 9(4), 17 (2022)

    Google Scholar 

  64. Pinkerton Corporate Risk Management and FICCI, India Risk Survey, (2020)

  65. National Crime Records Bureau, Accidental Deaths and Suicides in India, National Crime Records Bureau, (2020)

  66. Pinkerton and FICCI, India Risk Survey 2021, (2021). [Online]. Available: https://pinkerton.com/media/our-insights/briefings/sources/india-risk-survey-2021.pdf

Download references

Funding

The authors declare that no funds or grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Kumar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, S., Kolte, R., Kumar, A. et al. Fire Hazard In Urban Areas: A Scoping Review To Understand Issues And Opportunities. J. Inst. Eng. India Ser. A (2024). https://doi.org/10.1007/s40030-024-00808-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40030-024-00808-2

Keywords

Navigation