Skip to main content
Log in

Influence of Diagonal Prop Bar on the Behavior of Stiffened Concrete-Filled Steel Tube Columns

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

This study proposed a newly built-up CFST column reinforced by diagonal props called a diagonal prop CFST column. Experiments were performed to investigate the response of the proposed column section subjected to axial compression. The CFST column behavior was presented using typical curves of load-deformation, load–strain, and load-carrying capacity. Further, the parametric analysis was performed to explore how changing the prop’s geometry and materials can affect its ultimate strength. The diagonal props inside the CFST columns controlled the steel tube from buckling throughout the height of the columns, which also made the concrete inside the tube more flexible. Under axial compression, it was found that a prop bar with a diameter of 8–16 mm makes the proposed CFST columns more conservative compared to the CFST columns without props. Also, an equation was developed to estimate the CFST column's ultimate strength under axial loading. The experimental results and the proposed equation were observed to be in good agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. C.W. Roeder, Overview of hybrid systems United for seismic States and composite design in the United Stated. Eng. Struct. 20(4–6), 355–363 (1998). https://doi.org/10.1016/S0141-0296(97)00035-7

    Article  Google Scholar 

  2. T. Kitada, Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan. Eng. Struct. 20(4–6), 347–354 (1998). https://doi.org/10.1016/S0141-0296(97)00026-6

    Article  Google Scholar 

  3. N. E. Shanmugam, B. Lakshmi, “State of the art report on steel-concrete composite columns. (2001). https://doi.org/10.1016/S0143-974X(01)00021-9.

  4. L.H. Han, W. Li, R. Bjorhovde, Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members. J. Constr. Steel Res. 100, 211–228 (2014). https://doi.org/10.1016/j.jcsr.2014.04.016

    Article  Google Scholar 

  5. M.A. Bradford, H.Y. Loh, B. Uy, Slenderness limits for filled circular steel tubes. J. Constr. Steel Res. 58(2), 243–252 (2002). https://doi.org/10.1016/S0143-974X(01)00043-8

    Article  Google Scholar 

  6. J.F. Dong, Q.Y. Wang, Z.W. Guan, Structural behaviour of recycled aggregate concrete filled steel tube columns strengthened by CFRP. Eng. Struct. 48, 532–542 (2013). https://doi.org/10.1016/j.engstruct.2012.11.006

    Article  Google Scholar 

  7. B. Uy, S. Das, Wet concrete loading of thin-walled steel box columns during the construction of a tall building. J. Construct. Steel Res 42(2), 95–119 (1997)

    Article  Google Scholar 

  8. B. Uy, Strength of concrete filled steel box columns incorporating local buckling. J. Struct. Eng. 126(3) (2000).

  9. J. Zeghiche, K. Chaoui, An experimental behaviour of concrete-filled steel tubular columns. J. Constr. Steel Res. 61(1), 53–66 (2005). https://doi.org/10.1016/j.jcsr.2004.06.006

    Article  Google Scholar 

  10. Z. Tao, L.H. Han, D.Y. Wang, Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete. Thin-Walled Struct. 46(10), 1113–1128 (2008). https://doi.org/10.1016/j.tws.2008.01.007

    Article  Google Scholar 

  11. Y. Ling, W. Y. Feng, J. H. Zhao, Y. Li, Study on the ultimate bearing capacity of concrete filled steel square tubular short column with PBL. in Advanced Materials Research, Trans Tech Publications Ltd, 2014, pp. 770–775. https://doi.org/10.4028/www.scientific.net/AMR.941-944.770.

  12. J. Zhang, Y. Liu, J. Yang, K. Xu, “Experimental research and finite element analysis of concrete-filled steel box columns with longitudinal stiffeners. in Advanced Materials Research, 2011, pp. 1037–1042. https://doi.org/10.4028/www.scientific.net/AMR.287-290.1037.

  13. Z. Tian, Y. Liu, L. Jiang, W. Zhu, Y. Ma, A review on application of composite truss bridges composed of hollow structural section members. J. Traffic Transport Eng (English Edition) 6(1), 94–108. https://doi.org/10.1016/j.jtte.2018.12.001.

  14. X. Zhou, Z. Zhou, D. Gan, Analysis and design of axially loaded square CFST columns with diagonal ribs. J. Constr. Steel Res. 167 (2020). https://doi.org/10.1016/j.jcsr.2019.105848.

  15. Z. Zhou, D. Gan, X. Zhou, Improved composite effect of square concrete-filled steel tubes with diagonal binding ribs. J. Struct. Eng. 145(10) (2019). https://doi.org/10.1061/(asce)st.1943-541x.0002400.

  16. W. Liang, J.F. Dong, S.C. Yuan, Q.Y. Wang, Behavior of self-compacting concrete-filled steel tube columns with inclined stiffener ribs under axial compression. Strength Mater. 49(1), 125–132 (2017). https://doi.org/10.1007/s11223-017-9850-z

    Article  CAS  Google Scholar 

  17. A. Zhu, X. Zhang, H. Zhu, J. Zhu, Y. Lu, Experimental study of concrete filled cold-formed steel tubular stub columns. J. Constr. Steel Res. 134, 17–27 (2017). https://doi.org/10.1016/j.jcsr.2017.03.003

    Article  CAS  Google Scholar 

  18. C. S. Huang et al., Axial load behavior of stiffened concrete-filled steel columns. J. Struct. Eng. 128(9) (2002). https://doi.org/10.1061/ASCE0733-94452002128:91222.

  19. H.-T. Hu, M. Asce, C.-S. Huang, M.-H. Wu, Y.-M. Wu, Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. J. Struct. Eng. 129(10) (2003). https://doi.org/10.1061/ASCE0733-94452003129:101322.

  20. A. Bahrami, W. H. Wan Badaruzzaman, S. A. Osman, Behavior of stiffened concrete-filled steel composite (CFSC) stub columns. Latin Am. J. Solids Struct., pp. 409–440 (2013).

  21. A. Bahrami, H. Wan, S. A. Osman, Investigation of concrete-filled steel composite (CFSC) stub columns with bar stiffeners. J. Civil Eng. Manage. 19(3), 433–446 (2013). https://doi.org/10.3846/13923730.2013.768545.

  22. A. Bahrami, W. H. Wan Badaruzzaman, S. A. Osman, Numerical study of concrete-filled steel composite (CFSC) stub columns with steel stiffeners. Latin Am. J. Solids Struct. 11(4), 683–703 (2014). https://doi.org/10.1590/s1679-78252014000400008.

  23. F. xing Ding, L. Luo, J. Zhu, L. Wang, Z. wu Yu, Mechanical behavior of stirrup-confined rectangular CFT stub columns under axial compression. Thin-Walled Struct. 124, 136–150 (2018). https://doi.org/10.1016/j.tws.2017.12.007.

  24. Y. Wang, Y. Yang, S. Zhang, Static behaviors of reinforcement-stiffened square concrete-filled steel tubular columns. Thin-Walled Struct. 58, 18–31 (2012). https://doi.org/10.1016/j.tws.2012.04.015

    Article  Google Scholar 

  25. Y. Yang, J. Zhang, Y. Wang, Experimental research on static behavior of stiffened square concrete-filled steel tubular columns subjected to axial load. Appl. Mech. Mater. 1049–1057 (2013). https://doi.org/10.4028/www.scientific.net/AMM.275-277.1049.

  26. Y. Yang, Y. Wang, F. Fu, Effect of reinforcement stiffeners on square concrete-filled steel tubular columns subjected to axial compressive load. Thin-Walled Struct. 82, 132–144 (2014). https://doi.org/10.1016/j.tws.2014.04.009

    Article  Google Scholar 

  27. F.X. Ding, C. Fang, Y. Bai, Y.Z. Gong, Mechanical performance of stirrup-confined concrete-filled steel tubular stub columns under axial loading. J. Constr. Steel Res. 98, 146–157 (2014). https://doi.org/10.1016/j.jcsr.2014.03.005

    Article  Google Scholar 

  28. Z. Yang, C. Xu, Research on compression behavior of square thin-walled CFST columns with steel-bar stiffeners. Appl. Sci (Switzerland) 8(9) (2018). https://doi.org/10.3390/app8091602.

  29. M. H. Lai, J. C. M. Ho, Uni-axial compression test of concrete-filled-steel-tube columns confined by tie bars. Proc. Eng., pp 662–669 (2013). https://doi.org/10.1016/j.proeng.2013.04.084.

  30. J.C.M. Ho, M.H. Lai, Behaviour of uni-axially loaded CFST columns confined by tie bars. J. Constr. Steel Res. 83, 37–50 (2013). https://doi.org/10.1016/j.jcsr.2012.12.014

    Article  Google Scholar 

  31. S.M. Younes, H.M. Ramadan, S.A. Mourad, Stiffening of short small-size circular composite steel-concrete columns with shear connectors. J. Adv. Res. 7(3), 525–538 (2016). https://doi.org/10.1016/j.jare.2015.08.001

    Article  PubMed  Google Scholar 

  32. F. xing Ding, J. Zhu, S. S. Cheng, X. Liu, Comparative study of stirrup-confined circular concrete-filled steel tubular stub columns under axial loading. Thin-Walled Struct. 123, 294–304 (2018). https://doi.org/10.1016/j.tws.2017.11.033.

  33. M.H. Lai, J.C.M. Ho, Behaviour of uni-axially loaded concrete-filled-steel-tube columns confined by external rings. Struct. Des. Tall Special Build. 23(6), 403–426 (2014). https://doi.org/10.1002/tal.1046

    Article  Google Scholar 

  34. J.C.M. Ho, L. Luo, Efficiency on uni-axial compressive strength improvement by using externally confined concrete-filled steel tube columns. HKIE Trans Hong Kong Inst. Eng. 20(2), 96–108 (2013). https://doi.org/10.1080/1023697X.2013.794572

    Article  Google Scholar 

  35. M.H. Lai, J.C.M. Ho, Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load. Eng. Struct. 67, 123–141 (2014). https://doi.org/10.1016/j.engstruct.2014.02.013

    Article  Google Scholar 

  36. M.H. Lai, J.C.M. Ho, Confining and hoop stresses in ring-confined thin-walled concrete-filled steel tube columns. Mag. Concr. Res. 68(18), 916–935 (2016). https://doi.org/10.1680/jmacr.15.00225

    Article  Google Scholar 

  37. M.H. Lai, J.C.M. Ho, Axial strengthening of thin-walled concrete-filled-steel-tube columns by circular steel jackets. Thin-Walled Struct. 97, 11–21 (2015). https://doi.org/10.1016/j.tws.2015.09.002

    Article  ADS  Google Scholar 

  38. F. Yuan, L. Cao, H. Li, Axial compressive behaviour of high-strength steel spiral-confined square concrete-filled steel tubular columns. J. Constr. Steel Res. 192 (2022). https://doi.org/10.1016/j.jcsr.2022.107245.

  39. S. Chen, Y. Liu, J. Luo, S. Gao, Experimental and numerical analysis on rectangular concrete-filled steel tubular columns with T-shaped stiffeners. J Build. Eng. 45 (2022). https://doi.org/10.1016/j.jobe.2021.103510.

  40. Z. Ren, Q. Li, C. Liu, Effect of tie bars on axial compressive behavior of round-ended rectangular CFST stub columns. Materials 15(3) (2022). https://doi.org/10.3390/ma15031137.

  41. Z.L. Zuo, J. Cai, C. Yang, Q.J. Chen, G. Sun, Axial load behavior of L-shaped CFT stub columns with binding bars. Eng. Struct. 37, 88–98 (2012). https://doi.org/10.1016/j.engstruct.2011.12.042

    Article  Google Scholar 

  42. Z.L. Zuo, J. Cai, Q.J. Chen, X.P. Liu, C. Yang, T.W. Mo, Performance of T-shaped CFST stub columns with binding bars under axial compression. Thin-Walled Struct. 129, 183–196 (2018). https://doi.org/10.1016/j.tws.2018.04.002

    Article  Google Scholar 

  43. Z. L. Zuo, D. X. Liu, J. Cai, C. Yang, Q. J. Chen, “Experiment on T-shaped CFT stub columns with binding bars subjected to axial compression. Adv. Mater. Res., 439–443 (2014). https://doi.org/10.4028/www.scientific.net/AMR.838-841.439.

  44. Z. Y. Chen, Z. Y. Shen, Behavior of l-shaped concrete-filled steel stub columns under axial loading: experiment. 2010. [Online]. Available: www.hkisc.org

  45. Y. Yang, H. Yang, S. Zhang, Compressive behavior of t-shaped concrete filled steel tubular columns. Int. J. Steel Struct. 10(4), 419–430 (2010). https://doi.org/10.1007/BF03215849

    Article  Google Scholar 

  46. X. Liu, C. Xu, J. Liu, Y. Yang, Research on special-shaped concrete-filled steel tubular columns under axial compression. J. Constr. Steel Res. 147, 203–223 (2018). https://doi.org/10.1016/j.jcsr.2018.04.014

    Article  Google Scholar 

  47. S. P. Schneider, A. Member, Axially loaded concrete-filled steel tubes. J Struct. Eng. 124(10) (1998)., Accessed: Sep. 13, 2022. [Online]. Available: https://ascelibrary.org/doi/abs/https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)

  48. A. K. Tiwary, Experimental investigation into mild steel circular concrete-filled double skin steel tube columns. J. Constr. Steel Res. 198 (2022). https://doi.org/10.1016/j.jcsr.2022.107527.

  49. H. Singh, A.K. Tiwary, S.M. Eldin, R.A. Ilyas, Behavior of stiffened concrete-filled steel tube columns infilled with nanomaterial-based concrete subjected to axial compression. J. Market. Res. 24, 9580–9593 (2023). https://doi.org/10.1016/j.jmrt.2023.05.135

    Article  CAS  Google Scholar 

  50. A.K. Tiwary, A.K. Gupta, Post-fire exposure behavior of circular concrete-filled steel tube column under axial loading. Int. J. Steel Struct. 21(1), 52–65 (2021). https://doi.org/10.1007/s13296-020-00415-4

    Article  Google Scholar 

  51. H.G. Hasan, T. Ekmekyapar, B.A. Shehab, Mechanical performances of stiffened and reinforced concrete-filled steel tubes under axial compression. Mar. Struct. 65, 417–432 (2019). https://doi.org/10.1016/j.marstruc.2018.12.008

    Article  Google Scholar 

  52. O. Fazaa Rajab, Z. M. Ali, A. S. Mahmoud, M. S. Mohammed, Flexural ductility, stiffness, and toughness of new voided reinforced concrete one-way slab using waste plastic bottles. J. Eng. (United Kingdom), 2022 (2022). https://doi.org/10.1155/2022/8672694.

  53. F. Yuan, H. Huang, M. Chen, Effect of stiffeners on the eccentric compression behaviour of square concrete-filled steel tubular columns. Thin-Walled Struct. 135, 196–209 (2019). https://doi.org/10.1016/j.tws.2018.11.015

    Article  Google Scholar 

  54. X. Z. Zheng, X. H. Zheng, Experimental investigation of stiffened square CFST columns under axial load. Adv. Mater. Res. 1794–1800 (2014). https://doi.org/10.4028/www.scientific.net/AMR.919-921.1794.

  55. M. Ghannam, I.M. Metwally, Numerical investigation for the behaviour of stiffened circular concrete filled double tube columns. Structures 25, 901–919 (2020). https://doi.org/10.1016/j.istruc.2020.03.064

    Article  Google Scholar 

  56. X.-L. Zhao, R. Grzebieta, Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes (2002). [Online]. Available: www.elsevier.com/locate/tws

  57. M. Ahmed, Q. Q. Liang, V. I. Patel, M. N. S. Hadi, Behavior of eccentrically loaded double circular steel tubular short columns filled with concrete. Eng. Struct. 201 (2019). https://doi.org/10.1016/j.engstruct.2019.109790.

  58. M. Pagoulatou, T. Sheehan, X.H. Dai, D. Lam, Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns. Eng. Struct. 72, 102–112 (2014). https://doi.org/10.1016/j.engstruct.2014.04.039

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Kumar Tiwary.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Tiwary, A.K. Influence of Diagonal Prop Bar on the Behavior of Stiffened Concrete-Filled Steel Tube Columns. J. Inst. Eng. India Ser. A 105, 105–128 (2024). https://doi.org/10.1007/s40030-023-00770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-023-00770-5

Keywords

Navigation