Skip to main content
Log in

Natural Carbonation Resistance of RCA-SCC Blended with Mineral Admixtures

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

The work reported in this paper comprises of estimation of natural carbonation resistance of recycled concrete aggregates-based self-compacting concrete (RCA-SCC) tested for natural outdoor exposure until 6 years. Thirteen RCA-SCC mixes were made in total, covering control SCC, four RCA-SCC mixes, and eight RCA-SCC mixes blended with mineral admixtures. Natural carbonation tests were performed after specified exposure using the conventional phenolphthalein method. The findings indicate reduction of natural carbonation resistance with increase in RCA as replacement of coarse natural aggregates (CNA) along with prolonging time due to their distinct physio-structural compositions. The maleficence due to the presence of RCA in SCC has been recompensed up to a certain extent with the addition of silica fume (SF) or metakaolin (MK). The results also show a steady decrease in resistance towards natural carbonation when the alteration level increases resulting in higher values of carbonation coefficients obtained for non-blended and blended RCA-SCC mixes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V.G. Papadakis, C.G. Vayenas, M.N. Fardis, ACI Mater. J. 88, 363 (1991)

    Google Scholar 

  2. V.G. Papadakis, Cem. Concr. Res. 30, 291 (2000)

    Article  Google Scholar 

  3. K. Sisomphon, L. Franke, Cem. Concr. Res. 37, 1647 (2007)

    Article  Google Scholar 

  4. A. Younsi, P. Turcry, A. Aït-Mokhtar, S. Staquet, Cem. Concr. Res. 43, 25 (2013)

    Article  Google Scholar 

  5. A. Morandeau, M. Thiéry, P. Dangla, Cem. Concr. Res. 67, 225 (2015)

    Article  Google Scholar 

  6. C.-Q. Lye, R.K. Dhir, G.S. Ghataora, Mag. Concr. Res. 67, 1150 (2015)

    Article  Google Scholar 

  7. X. Wang, K. Park, ACI Mater. J. 2, 151 (2016)

    Google Scholar 

  8. A. Leemann, P. Nygaard, J. Kaufmann, R. Loser, Cem. Concr. Compos. 62, 33 (2015)

    Article  Google Scholar 

  9. R.V. Silva, R. Neves, J. De Brito, R.K. Dhir, Cem. Concr. Compos. 62, 22 (2015)

    Article  Google Scholar 

  10. O.B. Isgor, A.G. Razaqpur, Cem. Concr. Compos. 26, 57 (2004)

    Article  Google Scholar 

  11. A. Steffens, D. Dinkler, H. Ahrens, Cem. Concr. Res. 32, 935 (2002)

    Article  Google Scholar 

  12. B. Bary, A. Sellier, Cem. Concr. Res. 34, 1859 (2004)

    Article  Google Scholar 

  13. A.V. Saetta, R.V. Vitaliani, Cem. Concr. Res. 34, 571 (2004)

    Article  Google Scholar 

  14. I. Galan, C. Andrade, M. Castellote, Cem. Concr. Res. 49, 21 (2013)

    Article  Google Scholar 

  15. C.-T. Chen, C.-W. Ho, J. Mater. Civ. Eng. 25, 1929 (2013)

    Article  Google Scholar 

  16. J.H.M. Visser, Constr. Build. Mater. 67, 8 (2014)

    Article  Google Scholar 

  17. N. Ankur, N. Singh, Renew. Sustain. Energy Rev. 149, 111361 (2021)

    Article  Google Scholar 

  18. N. Singh, P. Kumar, P. Goyal, J. Build. Eng. 26, 100882 (2019)

    Article  Google Scholar 

  19. P. Kumar, N. Singh, J. Build. Eng. 32, 101491 (2020)

    Article  Google Scholar 

  20. N. Singh, S.P. Singh, J. Build. Eng. 25, 100780 (2019)

    Article  Google Scholar 

  21. N. Singh, M. Mithulraj, S. Arya, Resour. Conserv. Recycl. 144, 240 (2019)

    Article  Google Scholar 

  22. R. Kasemchaisiri, S. Tangtermsirikul, ScienceAsia 34, 87 (2008)

    Article  Google Scholar 

  23. E. Güneyisi, M. Gesolu, E. Özbay, Constr. Build. Mater. 24, 1878 (2010)

    Article  Google Scholar 

  24. R. Siddique, J. Kunal, Sustain. Cem. Mater. 4, 225 (2015)

  25. R. Neves, F. Branco, J. de Brito, Cem. Concr. Compos. 41, 9 (2013)

    Article  Google Scholar 

  26. M. Limbachiya, S. Meddah, Y. Ouchagour, Constr. Build. Mater. 27, 439 (2012)

    Google Scholar 

  27. J. Sim, C. Park, Waste Manag. 31, 2352 (2011)

    Article  Google Scholar 

  28. S. Kou, C. Poon, Cem. Concr. Compos. 37, 12 (2013)

    Article  Google Scholar 

  29. S. Arredondo-Rea, R. Corral-Higuera, J. Gómez-Soberón, J. Castorena-González, V. Orozco-Carmona, J. Almaral-Sánchez, Int. J. Electrochem. Sci. 7, 1602 (2012)

    Google Scholar 

  30. L. Zong, Z. Fei, S. Zhang, J. Clean. Prod. 70, 175 (2014)

    Article  Google Scholar 

  31. N. Singh, S. Singh, Constr. Build. Mater. 127, 828 (2016)

    Article  Google Scholar 

  32. V. Corinaldesi, G. Moriconi, Constr. Build. Mater. 23, 2869 (2009)

    Article  Google Scholar 

  33. J. Xiao, B. Lei, C. Zhang, Sci. China Ser. E Technol. Sci. 55, 2609 (2012)

    Article  Google Scholar 

  34. F. Tian, W.X. Hu, H.M. Cheng, Y.L. Sun, Adv. Build. Mater. CEBM Trans. Tech. Publ. 261, 217 (2011)

    Google Scholar 

  35. C. Faella, C. Lima, E. Martinelli, M. Pepe, R. Realfonzo, Cem. Concr. Compos. 71, 85 (2016)

    Article  Google Scholar 

  36. N. Singh, S.P. Singh, J. Mater. Eng. Struct. 3, 35 (2016)

    Google Scholar 

  37. S. Varjonen, Accelerated Carbonated Concrete as Corrosion Environment (2004)

  38. A.D. Herrera, A. Rangel, and D. S. Santos, Mater. Struct. 111 (2013)

  39. M.R. Jones, M. Newlands, Mater. Struct. 34, 396 (2001)

    Article  Google Scholar 

  40. T.R. Naik, R. Kumar, in 2nd Int. Conf. Sustain. Constr. Mater. Technol. Univ. Politec. Delle Marche, Ancona, Italy (2010)

  41. A.M. Dunster, in BRE Inf. Pap. December 2000 (2000)

  42. C. Thomas, J. Setien, J.A. Polanco, P. Alaejos, M.S. Juan, Constr. Build. Mater. 40, 1054 (2013)

    Article  Google Scholar 

  43. A. M. Neville, Properties of Concrete, 4th edn. (John Wiley and Sons Inc, New York, 1996)

  44. IS:8112-2013, IS 8112: 2013, Ordinary Portland Cement, 43 Grade—Specification, Bureau of Indian Standards, New Delhi (2013).

  45. IS 383: 2016, Coarse and Fine Aggregate for Concrete—Specification (Third Revision) (2016)

  46. A. C618, ASTM C618: standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (2019)

  47. L.A. Pereira-de-Oliveira, M.C.S. Nepomuceno, J.P. Castro-Gomes, M.F.C. Vila, Constr. Build. Mater. 51, 113 (2014)

    Article  Google Scholar 

  48. S. Lilia, C. Priano, S. Marfil, Constr. Build. Mater. 113, 498 (2016)

    Article  Google Scholar 

  49. P.R. da Silva, J. de Brito, Constr. Build. Mater. 86, 101 (2015)

    Article  Google Scholar 

  50. D. Niknezhad, S. Kamali-Bernard, J. Brossault, in Conf. 34èmes Rencontres l’AUGC, Univ. Liège, Belgique (2016)

  51. N. Singh, S.P. Singh, Eur. J. Environ. Civ. Eng. 1 (2018)

  52. N. Singh, S.P. Singh, Constr. Build. Mater. 181, 73 (2018)

    Article  Google Scholar 

  53. N. Singh, S. Singh, J. Sustain. Cem. Mater. 7, 214 (2018)

    Google Scholar 

  54. N. Singh, S.P. Singh, Constr. Build. Mater. 121, 400 (2016)

    Article  Google Scholar 

  55. Jalandhar climate: average temperature weather by month Jalandhar weather averages—Climate-Data.org (n.d.)

  56. Stamp’s & Koeppen’s Classification of Climatic Regions of India—PMF IAS (n.d.)

  57. BS EN 206:2013+A2:2021, Concrete. Specification, Performance, Production and Conformity (Reu de Stassart, B-1050 Brussels, 2021)

  58. S.P. Singh, N. Singh, J. Mater. Eng. Struct. 3, 59 (2016)

    Google Scholar 

  59. J. Geng, J. Sun, Constr. Build. Mater. 49, 814 (2013)

    Article  Google Scholar 

  60. H. Shi, B. Xu, X.C. Zhou, Constr. Build. Mater. 23, 1980 (2009)

    Article  Google Scholar 

  61. G. Li, X. L. Li, R. R. Wei, J. M. Du, and X. S. Wu, in Proc. 4th Int. Conf. Durab. Concr. Struct. 24–26 July, 2014 Purdue Univ., West Lafayette, IN, USA (2014)

  62. E.A.B. Khalil, M. Anwar, Water Sci. 29, 36 (2015)

    Article  Google Scholar 

  63. J.M. Chi, R. Huang, C.C. Yan, J. Mar. Sci. Technol. 10, 14 (2002)

    Article  Google Scholar 

  64. B. Lei, J.Z. Xiao, J. Build. Mater. 11, 605 (2008)

    Google Scholar 

  65. J.W. Ying, J.Z. Xiao, J. Arch. Civ. Eng. 29, 56 (2012)

    Google Scholar 

  66. S. Goel, S.P. Singh, P. Singh, Eng. Struct. 40, 131 (2012)

    Article  Google Scholar 

  67. H. Ahmed, Cementitious Composites Reinforced with Multi-Walled Carbon Nanotubes, Instituto Superior Técnico, Universidade de Lisboa, Portugal 2017

  68. H. Ahmed, J.A. Bogas, M. Guedes, J. Mater. Civ. Eng. 30, 04018257 (2018)

    Article  Google Scholar 

  69. A. Carriço, J.A. Bogas, A. Hawreen, M. Guedes, Constr. Build. Mater. 164, 121 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The financial aid to authors by the Government of India is acknowledged

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder Pal Singh.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Singh, S.P. Natural Carbonation Resistance of RCA-SCC Blended with Mineral Admixtures. J. Inst. Eng. India Ser. A 103, 531–542 (2022). https://doi.org/10.1007/s40030-022-00620-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-022-00620-w

Keywords

Navigation