Skip to main content
Log in

Enhancement of the Thermal Durability of Fly Ash-Based Geopolymer Paste by Incorporating Potassium Feldspar

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

The aim of this research is to study the effect of different percentages of potassium feldspar (KF) (0%, 5%, 10% and 20% by weight) on the proficiency of fly ash (FA)-based geopolymer paste when exposed to elevated temperatures of 300 °C, 600 °C and 900 °C. The percentages (by weight of the source material) of both Na2O and SiO2 were fixed at 8% each. The behaviour was evaluated on the behalf of residual strength, weight loss, volumetric shrinkage and physical changes at various temperatures. To observe the changes in microstructure and mineralogy during the thermal exposure, scanning electron microscopy (SEM) images of the samples were studied. After observing the results, good durability was revealed at elevated temperatures when KF was incorporated in FA-based geopolymer paste. At 900 °C, the residual compressive strengths of adding of KF @ 0%, 5%, 10% and 20% by weight were 22%, 25%, 29% and 42% of those at room temperature, respectively. At 900 °C, the geopolymer matrix was observed to be most densified, which imparts superior durability to the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Davidovits, Geopolymer chemistry and properties, in 1st European Conference on Soft Mineralurgy, Compiegne, France, vol. 1 (1998), pp. 25–48

  2. H. Xu, J.S.J. van Deventer, Factors affecting the geopolymerization of alkali-feldspar. Miner. Metall. Process. 19(4), 209–214 (2002)

    Google Scholar 

  3. J.S.J. van Deventer, D. Feng, P. Duxson, Dry mix cement composition, methods and systems involving same, US Patent 7,691,198 B2 (2010)

  4. D. Feng, J.L. Provis, J.S.J. van Deevener, Thermal activation of albite for the synthesis of one part mix geopolymer. J. Am. Ceram. Soc. 95, 555–572 (2012)

    Google Scholar 

  5. T. Bakharev, Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concrete Res. 36, 1134–1147 (2006)

    Article  Google Scholar 

  6. A. Fernández-Jiménez, A. Palomo, J.Y. Pastor, A. Martín, New cementitious materials based on alkali-activated fly ash: performance at high temperatures. J. Am. Ceram. Soc. 91, 3308–3314 (2008). https://doi.org/10.1111/j.1551-2916.2008.02625.x

    Article  Google Scholar 

  7. V.F.F. Barbosa, K.J.D. MacKenzie, Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 38, 319–331 (2003). https://doi.org/10.1016/S0025-5408(02)01022-X

    Article  Google Scholar 

  8. A. Martin, J.Y. Pastor, A. Palomo, A.F. Jiménez, Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers). Constr. Build. Mater. 93, 1188–1196 (2015). https://doi.org/10.1016/j.conbuildmat.2015.04.044

    Article  Google Scholar 

  9. T. Bakharev, J.G. Sanjayan, Y.B. Cheng, Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem. Concrete Res. 29, 1619–1625 (1999). https://doi.org/10.1016/S0008-8846(99)00143-X

    Article  Google Scholar 

  10. P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, U. Rattanasak, Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag 29, 539–543 (2009). https://doi.org/10.1016/j.wasman.2008.06.023

    Article  Google Scholar 

  11. A. Noumowé, R. Siddique, G. Ranc, Thermo-mechanical characteristics of concrete at elevated temperatures up to 310°C. Nucl. Eng. Des. 239, 470–476 (2009). https://doi.org/10.1016/j.nucengdes.2008.11.020

    Article  Google Scholar 

  12. D.L.Y. Kong, J.G. Sanjayan, Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concrete Res. 40, 334–339 (2010). https://doi.org/10.1016/j.cemconres.2009.10.017

    Article  Google Scholar 

  13. N. Pathak, R. Siddique, Properties of self-compacting-concrete containing fly ash subjected to elevated temperatures. Constr. Build. Mater. 30, 274–280 (2012). https://doi.org/10.1016/j.conbuildmat.2011.11.010

    Article  Google Scholar 

  14. R. Siddique, D. Kaur, Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures. J. Adv. Res. 3, 45–51 (2012). https://doi.org/10.1016/j.jare.2011.03.004

    Article  Google Scholar 

  15. R. Siddique, Utilization (recycling) of iron and steel industry by-product (GGBS) in concrete: strength and durability properties. J. Mater. Cycles Waste Manag. 16, 460–467 (2014). https://doi.org/10.1007/s10163-013-0206-x

    Article  Google Scholar 

  16. A.M. Rashad, Y. Bai, P.A.M. Basheer, N.C. Collier, N.B. Milestone, Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem. Concrete Res. 42, 333–343 (2012). https://doi.org/10.1016/j.cemconres.2011.10.007

    Article  Google Scholar 

  17. W. Hajjaji et al., Composition and technological properties of geopolymers based on metakaolin and red mud. Mater. Des. 52, 648–654 (2013). https://doi.org/10.1016/j.matdes.2013.05.058

    Article  Google Scholar 

  18. O.A. Abdulkareem, A.M. Mustafa Al Bakri, H. Kamarudin, I. Khairul Nizar, A.A. Saif, Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr. Build. Mater. 50, 377–387 (2014). https://doi.org/10.1016/j.conbuildmat.2013.09.047

    Article  Google Scholar 

  19. G. Kürklü, The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos. Part B Eng. 92, 9–18 (2016). https://doi.org/10.1016/j.compositesb.2016.02.043

    Article  Google Scholar 

  20. M. Soutsos, A.P. Boyle, R. Vinai, A. Hadjierakleous, S.J. Barnett, Factors influencing the compressive strength of fly ash based geopolymers. Constr. Build. Mater. 110, 355–368 (2016). https://doi.org/10.1016/j.conbuildmat.2015.11.045

    Article  Google Scholar 

  21. G. Gorhan, R. Aslaner, O. Sinik, The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste. Compos. Part B Eng. 97, 329–335 (2016). https://doi.org/10.1016/j.compositesb.2016.05.019

    Article  Google Scholar 

  22. W.G.V. Saavedra, R.M. de Gutiérrez, Performance of geopolymer concrete composed of fly ash after exposure to elevated temperatures. Constr. Build. Mater. 154, 229–235 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.208

    Article  Google Scholar 

  23. J. Temuujin, A. van Riessen, Effect of fly ash preliminary calcination on the properties of geopolymer. J. Hazard. Mater. 164, 634–639 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.065

    Article  Google Scholar 

  24. S. Thokchom, K.K. Mandal, S. Ghosh, Effect of Si/Al ratio on performance of fly ash geopolymers at elevated temperature. Arab. J. Sci. Eng. 37, 977–989 (2012). https://doi.org/10.1007/s13369-012-0230-5

    Article  Google Scholar 

  25. J. Davidovits, Geopolymers—inorganic polymeric new materials. J. Therm. Anal. 37, 1633–1656 (1991). https://doi.org/10.1007/BF01912193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Mayengbam, S.S. Enhancement of the Thermal Durability of Fly Ash-Based Geopolymer Paste by Incorporating Potassium Feldspar. J. Inst. Eng. India Ser. A 102, 175–183 (2021). https://doi.org/10.1007/s40030-020-00498-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-020-00498-6

Keywords

Navigation