Skip to main content

Microstructure Evolution in Ordinary Portland Cement–Metakaolin–Red Mud-Based Ternary Blended Cement


The microstructure plays a vital role in governing the physical, chemical and strength properties of cement. Hence, microstructure analysis has been carried out by replacing 0% to 14% of the mass of ordinary Portland cement with metakaolin and red mud of different ratios. Studies have also been carried out to understand the effect of blending on the pH of cement paste and its influence on the setting time. The normal consistency of cement and red mud mix is found to be proportional to the percentage of replaced red mud and is attributed to the presence of finer particles in red mud. The cement paste without any addition has the lowest water requirement (28.5%) compared to the cement with metakaolin and red mud. The study shows that the strength of OPC having 80:20 MK:RM blend is high and is attributed to the pozzolanic reaction of MK and the RM particles which imparts filler effects to the concrete.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    A. Hasanbeigi, L. Price, E. Lin, Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: a technical review. Renew. Sustain. Energy Rev. 16, 6220–6238 (2012).

    Article  Google Scholar 

  2. 2.

    A. Palomo, M.W. Grutzeck, M.T. Blanco, Alkali-activated fly ashes. Cem. Concr. Res. 29, 1323–1329 (1999).

    Article  Google Scholar 

  3. 3.

    K. Erdoğdu, P. Türker, Effects of fly ash particle size on strength of Portland cement fly ash mortars. Cem. Concr. Res. 28, 1217–1222 (1998).

    Article  Google Scholar 

  4. 4.

    P. Chindaprasirt, C. Jaturapitakkul, T. Sinsiri, Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem. Concr. Compos. 27, 425–428 (2005).

    Article  Google Scholar 

  5. 5.

    L. Bágel, Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume. Cem. Concr. Res. 28, 1011–1022 (1998).

    Article  Google Scholar 

  6. 6.

    F. Sajedi, H.A. Razak, The effect of chemical activators on early strength of ordinary Portland cement-slag mortars. Constr. Build. Mater. 24, 1944–1951 (2010).

    Article  Google Scholar 

  7. 7.

    M. Whittaker, M. Zajac, M. Ben Haha, F. Bullerjahn, L. Black, The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends. Cem. Concr. Res. 66, 91–101 (2014).

    Article  Google Scholar 

  8. 8.

    D. Pedro, J. de Brito, L. Evangelista, Evaluation of high-performance concrete with recycled aggregates: use of densified silica fume as cement replacement. Constr. Build. Mater. 147, 803–814 (2017).

    Article  Google Scholar 

  9. 9.

    A.C.A. Muller, K.L. Scrivener, J. Skibsted, A.M. Gajewicz, P.J. McDonald, Influence of silica fume on the microstructure of cement pastes: new insights from 1H NMR relaxometry. Cem. Concr. Res. 74, 116–125 (2015).

    Article  Google Scholar 

  10. 10.

    M. Nili, A. Ehsani, Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume. Mater. Des. 75, 174–183 (2015).

    Article  Google Scholar 

  11. 11.

    E. Gartner, H. Hirao, A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 78, 126–142 (2015).

    Article  Google Scholar 

  12. 12.

    R.S. Almenares, L.M. Vizcaíno, S. Damas, A. Mathieu, A. Alujas, F. Martirena, Industrial calcination of kaolinitic clays to make reactive pozzolans. Case Stud. Constr. Mater. 6, 225–232 (2017).

    Article  Google Scholar 

  13. 13.

    Y. Liu, C. Lin, Y. Wu, Characterization of red mud derived from a combined Bayer Process and bauxite calcination method. J. Hazard. Mater. 146, 255–261 (2007).

    Article  Google Scholar 

  14. 14.

    J.P. Gonçalves, L.M. Tavares, R.D. Toledo Filho, E.M.R. Fairbairn, Performance evaluation of cement mortars modified with metakaolin or ground brick. Constr. Build. Mater. 23, 1971–1979 (2009).

    Article  Google Scholar 

  15. 15.

    K. Kaya, S. Soyer-Uzun, Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems. Ceram. Int. 42, 7406–7413 (2016).

    Article  Google Scholar 

  16. 16.

    R. Rathan Raj, E.B. Perumal Pillai, Chloride diffusivity and corrosion resistance of OPC–MK–RM based ternary blended concrete—an experimental investigation. IOP Conf. Ser. Mater. Sci. Eng. 431, 052008 (2018).

    Article  Google Scholar 

  17. 17.

    N. Ye, J. Yang, S. Liang, Y. Hu, J. Hu, B. Xiao et al., Synthesis and strength optimization of one-part geopolymer based on red mud. Constr. Build. Mater. 111, 317–325 (2016).

    Article  Google Scholar 

  18. 18.

    R. Rathan Raj, E.B. Perumal Pillai, A.R. Santhakumar, Effective utilization of redmud bauxite waste as a replacement of cement in concrete for environmental conservation. Ecol. Environ. Conserv. 19, 247–255 (2013)

    Google Scholar 

  19. 19.

    R. Rathan Raj, E.B. Perumal Pillai, A.R. Santhakumar, Evaluation and mix design for ternary blended high strength concrete. Procedia Eng. 51, 65–74 (2013).

    Article  Google Scholar 

  20. 20.

    R. Rathan Raj, E.B. Perumal Pillai, A.R. Santhakumar, Strength and corrosion properties of concrete incorporating metakaolin and redmud. Eur. J. Sci. Res. 91, 569–579 (2012)

    Google Scholar 

  21. 21.

    J. Havdahl, J. Harald, The alkalinity of cementitious pastes with microsilica cured at ambient and elevated temperatures. Nord Concr. Res. Publ. 12, 42–56 (1993)

    Google Scholar 

  22. 22.

    M. Cabeza, A. Collazo, X.R. Nóvoa, M.C. Pérez, Red mud as a corrosion inhibitor for reinforced concrete. J. Corros. Sci. Eng. 6, 1–14 (2003)

    Google Scholar 

  23. 23.

    Z. Li, Z. Ding, Property improvement of Portland cement by incorporating with metakaolin and slag. Cem. Concr. Res. 33, 579–584 (2003).

    Article  Google Scholar 

  24. 24.

    E. Moulin, P. Blanc, D. Sorrentino, Influence of key cement chemical parameters on the properties of metakaolin blended cements. Cem. Concr. Compos. 23, 463–469 (2001).

    Article  Google Scholar 

  25. 25.

    E. Badogiannis, G. Kakali, G. Dimopoulou, E. Chaniotakis, S. Tsivilis, Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem. Concr. Compos. 27, 197–203 (2005).

    Article  Google Scholar 

  26. 26.

    M.H. Zhang, V.M. Malhotra, Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cem. Concr. Res. 25, 1713–1725 (1995).

    Article  Google Scholar 

  27. 27.

    F. Curcio, B. DeAngelis, S. Pagliolico, Metakaolin as a pozzolanic microfiller for high-performance mortars. Cem. Concr. Res. 28, 803–809 (1998).

    Article  Google Scholar 

  28. 28.

    C.-S. Poon, L. Lam, S. Kou, Y.-L. Wong, R. Wong, Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem. Concr. Res. 31, 1301–1306 (2001).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. Rathan Raj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rathan Raj, R., Brijitta, J., Ramachandran, D. et al. Microstructure Evolution in Ordinary Portland Cement–Metakaolin–Red Mud-Based Ternary Blended Cement. J. Inst. Eng. India Ser. A 100, 707–718 (2019).

Download citation


  • X-ray diffraction
  • Microstructure
  • Morphology
  • Strength
  • Metakaolin
  • Red mud