Skip to main content

Recent Advances in Health Monitoring and Assessment of In-service Oil and Gas Buried Pipelines

Abstract

Structural Health Monitoring techniques has captured much interest and attention of researchers owing to their potential in providing spatial and quantitative information regarding structural damage and the performance of a structure. Integrated health monitoring of structures with advances in sensor technology can improve structural reliability, system performance and safety. Pipelines exist for the transport of crude/refined petroleum, oil, natural gas and biofuels. Oil pipelines are made from steel which are usually buried. These pipelines are prone to natural and man-made damages. Hence monitoring of these buried pipelines becomes essential. Leakages of oil and gas from pipeline are dangerous for people and environment. Detection of leakage along the pipeline network is an essential part of the maintenance activity which is always a difficult task. The goal of the paper is to present the recent advancements in the field of health monitoring and assessment of in-service buried oil and gas pipelines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    S.B. Costello, D.N. Chapman, C.D.F. Rogers, N. Metje, Underground asset location and condition assessment technologies. Tunn. Undergr. Space Technol. 22, 524–542 (2007)

    Article  Google Scholar 

  2. 2.

    Z.A. Majid, R. Mohsin, Z. Yaacob, Z. Hassan, Failure analysis of natural gas pipes. Eng. Fail. Anal. 17, 818–837 (2010)

    Article  Google Scholar 

  3. 3.

    E.S. Meresht, T.S. Farahani, J. Neshati, Failure analysis of stress corrosion cracking occurred in a gas transmission steel pipeline. Eng. Fail. Anal. 18, 963–970 (2011)

    Article  Google Scholar 

  4. 4.

    J.Y. Zheng, B.J. Zhang, P.F. Liu, L.L. Wu, Failure analysis and safety evaluation of buried pipeline due to deflection of landslide process. Eng. Fail. Anal. 25, 156–168 (2012)

    Article  Google Scholar 

  5. 5.

    P. Vazouras, S.A. Karamanos, P. Dakoulas, Finite element analysis of buried steel pipelines under strike-slip fault displacements. Soil Dyn. Earthq. Eng. 30, 1361–1376 (2010)

    Article  Google Scholar 

  6. 6.

    F.R. Rofooei, H.H. Jalali, N.K.A Attari, M. Alavi, Full-scale laboratory testing of buried pipelines subjected to permanent ground displacement caused by reverse faulting, in Proceedings of 15th World Conferences on Earthquake Engineering, 2012

  7. 7.

    A. Boorboor, M. Hosseini, Sensitivity analysis of buried jointed pipelines subjected to earthquake waves. Open J. Earthq. Res. 4, 74–84 (2015)

    Article  Google Scholar 

  8. 8.

    M. Pour-Ghaz, Using electrical, magnetic and acoustic sensors to detect damage in segmental concrete pipes subjected to permanent ground displacement. Cem. Concr. Compos. 33, 749–762 (2011)

    Article  Google Scholar 

  9. 9.

    A.S. Bradshaw, G.DaSilva, M.T. McCue, J. Kim, S.S. Nadukuru, J. Lynch, R.L. Michalowski, M.Pour-Ghaz, J. Weiss, R.A. Green, Damage detection and health monitoring of buried concrete pipelines, in Prediction and Stimulation Methods for Geohazard Mitigation, 2009, pp 473-478

  10. 10.

    D. Hausamann, W. Zirnig, G. Schreier, P. Strobl, Monitoring of gas pipelines—a civil UAV application. Aircr. Eng. Aerosp. Technol. Int. J. 77(5), 352–360 (2005)

    Article  Google Scholar 

  11. 11.

    J. Agbakwuru, Pipeline potential leak detection technologies: assessment and perspective in the Nigeria Niger Delta region. J. Environ. Prot. 2, 1055–1061 (2001)

    Article  Google Scholar 

  12. 12.

    A.S. Ekine, G.O. Emujakporue, Investigation of corrosion of buried oil pipeline by the electrical geophysical methods. J. Appl. Sci. Environ. Manag. 14(1), 63–65 (2010)

    Google Scholar 

  13. 13.

    R. Ahmad, S. Banerjee, T. Kundu, Pipe wall damage detection in buried pipes using guided waves. J. Press. Vessel Technol. Am. Soc. Mech. Eng. 131, 1–10 (2009)

    Google Scholar 

  14. 14.

    M. Golshan, A. Ghavamian, A. Mohammed, A. Abdulshaheed, Pipeline monitoring system by using wireless sensor network. IOSR J. Mech. Civ. Eng. 13(3), 43–53 (2016)

    Google Scholar 

  15. 15.

    Y.C. Rao, S. Rani, P. Lavanya, Monitoring and protection of oil and gas condition in industrial using wireless sensor networks. Int. J. Electron. Commun. Comput. Technol. (IJECCT) 6(5), 213–218 (2012)

    Google Scholar 

  16. 16.

    S. Ravi, S. KarthikRaj, D. Sabareesan, R. Kishore, Pipeline monitoring using vibroacoustic sensing—a review. Int. Res. J. Eng. Technol. 3(1), 1095–1099 (2016)

    Google Scholar 

  17. 17.

    H.R. Choi, S.M. Ryew, Robotic system with active steering capability for internal inspection of urban gas pipelines. Mechatronics 12, 713–736 (2002)

    Article  Google Scholar 

  18. 18.

    H. cho, M. Takemoto, AE Monitoring of soil corrosion of buried pipe. J. Acoust. Emiss. 25, 267–275 (2007)

    Google Scholar 

  19. 19.

    S. Dezfouli, A. Zabihollah, Structural health monitoring of buried pipelines under static dislocation and vibration, IEEE, 2010, pp. 326–329

  20. 20.

    G. Park, H.H. Cudney, D.J. Inman, Feasibility of using impedance-based damage assessment for pipeline structures. Earthq. Eng. Struct. Dyn. 30, 1463–1474 (2001)

    Article  Google Scholar 

  21. 21.

    S.K. Sinha, Intelligent system for condition monitoring of underground pipelines. Comput. Aided Civ. Infrastrut. Eng. 19, 42–53 (2004)

    Article  Google Scholar 

  22. 22.

    J.Y. Nam, S.H. Choi, J.B. Choi, Y.J. Kim, On-line monitoring to detect third-party damage on underground natural gas pipelines using accelerometer. Adv. Saf. Struct. Integr. 110, 123–132 (2006)

    Google Scholar 

  23. 23.

    C. Bao, H. Hao, Z. Li, Vibration-based structural health monitoring of offshore pipelines numerical and experimental study. Struct. Control Health Monit. 20, 769–788 (2012)

    Article  Google Scholar 

  24. 24.

    Y. Jin, A. Eydgahi, Monitoring of distributed pipeline systems by wireless sensor networks, in Proceedings of the IAJC-IJME International Conference, 2008

  25. 25.

    Y. Ying, A data-driven framework for ultrasonic structural health monitoring of pipes, Theses and Dissertations at Research Showcase @ CMU, paper, vol 92, 2012

  26. 26.

    A.B. Thien, G. Park, C.R. Farrar, Health monitoring of pipeline systems using macro-fiber composite active-sensors. IJOSS Steel Struct. 7, 33–48 (2007)

    Google Scholar 

  27. 27.

    Yu. Lingyu, V. Giurgiutiu, P. Pollock, A Multi-Mode Sensing System for Corrosion Detection Using Piezoelectric Wafer Active Sensors (Department of Mechanical Engineering, University of South Carolina, Columbia, 2008), pp. 1–10

    Google Scholar 

  28. 28.

    L. Cui, Y. Liu, C.K. Soh, Macro-fiber composite based structural health monitoring system for axial cracks in cylindrical structures. J. Intell. Mater. Syst. Struct. 25(3), 332–341 (2014)

    Article  Google Scholar 

  29. 29.

    H.M. Matt, F.L. di Scalea, Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures. Smart Mater. Struct. 16, 1489–1499 (2007)

    Article  Google Scholar 

  30. 30.

    X. Hong, H. Wang, T. Wang, G. Liu, Y. Li, G. Song, Dynamic cooperative identification based on synergetics for pipe structural health monitoring with piezoceramic transducers. Smart Mater. Struct. 22, 1–13 (2013)

    Article  Google Scholar 

  31. 31.

    S. Choi, B. Song, R. Ha, H. Cha, Energy-aware pipeline monitoring system using piezoelectric sensor. Sens. J. 12, 1695–1702 (2012)

    Article  Google Scholar 

  32. 32.

    A. Smith, N. Dixon, G. Fowmes, Monitoring buried pipe deformation using acoustic emission: quantification of attenuation. Int. J. Geotech. Eng. 11, 418 (2016)

    Article  Google Scholar 

  33. 33.

    W.S. Abushanab, Oil transmission pipelines condition monitoring using wavelet analysis and ultrasonic techniques, vol 5, 2013, pp. 551–555

    Article  Google Scholar 

  34. 34.

    B. Vogelaar, M. Golombok, Quantification and localization of internal pipe damage. Mech. Syst. Signal Process. (2015). https://doi.org/10.1016/j.ymssp.2015.10.011

    Article  Google Scholar 

  35. 35.

    L. Zou, O. Sezerman, Pipeline corrosion monitoring by fiber optic distributed strain and temperature sensors, in NACE International, Corrosion Conference, 2008

  36. 36.

    D. Inaudi, B. Glisic, Long range fiber pipeline monitoring by distributed fiber optic sensing. J. Press. Vessel Technol. Am. Soc. Mech. Eng. 132(1), 01–09 (2010)

    Google Scholar 

  37. 37.

    K. Madditot, C.M. Maheshan, H. Prasannakumar, Monitoring of corrosions and leakages in gas pipelines and a safety technique using LabVIEW. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 5(8), 6910–6916 (2016)

    Google Scholar 

  38. 38.

    A.L.-K. Tariq, A.L.-T. Ziyad, A.L.-O. Abdullah, Wireless sensor networks for leakage detection in underground pipelines. Procedia Comput. Sci. 21, 491–498 (2013)

    Article  Google Scholar 

  39. 39.

    J. Frings, Enhanced pipeline monitoring with fiber optic sensors, in Proceeding of 6th Pipeline Technology Conference, 2011, pp 1–12

  40. 40.

    A. Barrias, J.R. Casas, S. Villalba, A review of distributed optical fiber sensors for civil engineering applications. Sensors 16, 748 (2016)

    Article  Google Scholar 

  41. 41.

    M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, T. Pfeiffer, Leakage detection using fiber optics distributed temperature monitoring, smart structures and materials. Smart Sen. Technol. Meas. Syst. 18, 18–25 (2008)

    Google Scholar 

  42. 42.

    X.W. Ye, Y.H. Su, J.P. Han, Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review. Sci. World J. 2014, 1–11 (2014)

    Google Scholar 

  43. 43.

    E. Tapanes, Fibre optic sensing solutions for real-time pipeline integrity monitoring. Aust. Pipeline Ind. Assoc. Natl. Conv. 3, 27–30 (2001)

    Google Scholar 

  44. 44.

    A. Mishra, A. Soni, Leakage detection using fibre optics distributed temperature sensing, in Proceedings of 6th Pipeline Technology Conference, 2011, pp. 1–12

  45. 45.

    B. Glisic, Y. Yao, Fiber optic method for health assessment of pipelines subjected to earthquake-induced ground movement. Struct. Health Monit. 11(6), 696–711 (2012)

    Article  Google Scholar 

  46. 46.

    L. Wong, S. Rathnayaka, W.K. Chiu, J. Kodikara, Fatigue damage monitoring of a cast iron pipeline using distributed optical fibre sensors, in Proceeding of 6th Asia Pacific Workshop on Structural Health Monitoring, Procedia Engineering, vol 188, 2017, pp. 293–300

    Article  Google Scholar 

  47. 47.

    T. Jiang, L. Ren, Z. Jia, D. Li, H. Li, Application of FBG based sensor in pipeline safety monitoring. MDPI, Appl. Sci. 7(540), 1–12 (2017)

    Google Scholar 

  48. 48.

    Y. Hou, D. Lei, S. Li, W. Yan, C.-Q. Li, Experimental investigation on corrosion effect on mechanical properties of buried metal pipes. Int. J. Corros. 2016, 1–13 (2016)

    Article  Google Scholar 

  49. 49.

    S. Nesic, Key issues related to modelling of internal corrosion of oil and gas pipelines—a review. Corros. Sci. 49, 4308–4338 (2007)

    Article  Google Scholar 

  50. 50.

    A.M. Sadeghioon, N. Metje, D.N. Chapman, C.J. Anthony, SmartPipes: smart wireless sensor networks for leak detection in water pipelines. J. Sens. Actuator Netw. 3, 64–78 (2014)

    Article  Google Scholar 

  51. 51.

    M.S.A. Rahman, H. Hasbullah, Early detection method of corrosion on buried pipeline, IEEE, 2010, pp. 760–764

  52. 52.

    J. Barshinger, S. Lynch, M. Nugent, Deployment of Cellular-Based Ultrasonic Corrosion Measurement System for Refining & Petro-Chemical Plant Applications, American Petroleum Institute

  53. 53.

    B. Anatoliy, B. Galina, G. Natalia, M. Sergey, G. Mikhail, Main pipelines corrosion monitoring device. Earth Environ. Sci. 50, 1–6 (2017)

    Google Scholar 

  54. 54.

    Z. Li, R. Jarvis, P.B. Nagy, S. Dixon, P. Cawley, Experimental and simulation methods to study the magnetic tomography method (MTM) for pipe defect detection. NDT and E Int. 92, 59–66 (2017)

    Article  Google Scholar 

  55. 55.

    D. Guofeng, Q. Kong, W. Fanghong, J. Ruan, G. Song, An experimental feasibility study of pipeline corrosion pit detection using a piezoceramic time reversal mirror. Smart Mater. Struct. 25, 1–5 (2016)

    Google Scholar 

  56. 56.

    A. Lee, M. Dahan, S. Amin, Integration of sUAS-enabled sensing for leak identification with oil and gas pipeline maintenance crews, in International Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 1143–1152

  57. 57.

    Z. Liu, W. Liao, W. Wei, D. Cuiwei, X. Li, Failure analysis of leakage caused by perforation in an L415 steel gas pipeline. Case Stud. Eng. Fail. Anal. 9, 63–70 (2017)

    Article  Google Scholar 

  58. 58.

    B. Apperl, A. Pressl, K. Schulz, Feasibility of locating leakages in sewage pressure pipes using the distributed temperature sensing technology. Water Air Soil Pollut. 228(82), 1–13 (2017)

    Google Scholar 

  59. 59.

    C. Liu, Y. Lia, L. Fangc, J. Hana, X. Minghai, Leakage monitoring research and design for natural gas pipelines based on dynamic pressure waves. J. Process Control 50, 66–76 (2017)

    Article  Google Scholar 

  60. 60.

    S. Yazdekhasti, K.R. Piratla, S. Atamturktur, A. Khan, Experimental evaluation of a vibration-based leak detection technique for water pipelines. Struct. Infrastruct. Eng. 14, 1–10 (2017)

    Google Scholar 

  61. 61.

    S. Yazdekhasti, K.R. Piratla, S. Atamturktur, A.A. Khan, Novel vibration-based technique for detecting water pipeline leakage. Struct. Infrastruct. Eng. 13(6), 731–742 (2017)

    Article  Google Scholar 

  62. 62.

    K. Rehman, F. Nawaz, Remote pipeline monitoring using wireless sensor networks, in IEEE, International Conference on Communication, Computing and Digital Systems, 2017, pp. 32–37

  63. 63.

    A. Mostafapour, S. Davoudi, Analysis of leakage in high pressure pipe using acoustic emission method. Appl. Acoust. 74, 335–342 (2013)

    Article  Google Scholar 

  64. 64.

    Q. Feng, Q. Kong, L. Huo, G. Song, Crack detection and leakage monitoring on reinforced concrete pipe. Smart Mater. Struct. 24, 1–8 (2015)

    Google Scholar 

  65. 65.

    G. Du, Q. Kong, T. Lai, G. Song, Feasibility study on crack detection of pipelines using piezoceramic transducers. Int. J. Distrib. Sens. Netw. 9, 1–7 (2013)

    Google Scholar 

  66. 66.

    N.F. Adnan, M.F. Ghazali, M.M. Amin, A.M.A Hamat, Leak detection in gas pipeline by acoustic and signal processing—a review, in Proceedings of 3rd International Conference of Mechanical Engineering Research, 2015, pp. 1–9

  67. 67.

    M. Abdelhafidh, L.C. Fourati, M. Fourati, A. Abidi, Hybrid mechanism for remote water pipeline monitoring system, IEEE, 2017, pp. 2140–2145

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Arun Sundaram.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arun Sundaram, B., Kesavan, K. & Parivallal, S. Recent Advances in Health Monitoring and Assessment of In-service Oil and Gas Buried Pipelines. J. Inst. Eng. India Ser. A 99, 729–740 (2018). https://doi.org/10.1007/s40030-018-0316-5

Download citation

Keywords

  • Distributed sensing
  • Piezo sensors
  • Macro fiber ceramics
  • Corrosion
  • Leakage detection
  • Wireless Sensors